Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:36:28.279Z Has data issue: false hasContentIssue false

Simulations and Argon-Cluster-Ion Smoothing of Surfaces

Published online by Cambridge University Press:  17 March 2011

D. B. Fenner
Affiliation:
Epion Corporation, Billerica, Massachusetts 01821, USA
D. W. Dean
Affiliation:
Studsvik Scandpower, Inc., Newton, Massachusetts
V. DiFilippo
Affiliation:
Dept. Mechanical Engineering, Tufts University, Medford, Massachusetts
L. P. Allen
Affiliation:
Epion Corporation, Billerica, Massachusetts 01821, USA
J. Hautala
Affiliation:
Epion Corporation, Billerica, Massachusetts 01821, USA
P. B. Mirkarimi
Affiliation:
Lawrence Livermore National Laboratory, California
Get access

Abstract

Bombardment of slightly rough, planar surfaces with an energetic gas-cluster ion beam (GCIB) is known to result in a decrease in roughness. We report comparison of measured surface evolution with simulations based on a simple phenomenological model. The model consists of a continuum rate equation for the surface height undergoing multiple cluster impacts. With suitable assumptions the main features observed in the evolution of an initially nonplanar surface can be simulated. Qualitatively, both experiment and simulation show that sharp features and asperities are rapidly eroded. Examples are given of initial surfaces that are either randomly rough and scratched, or very smooth with added nanoscale engineered features. Both types of surfaces show smoothing in microscopy evaluations of the GCIB and in the simulations, thereby identifying impact-transient surface diffusion as the primary cluster smoothing mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eklund, E.A., Bruinsma, R., Rudnick, J., and Williams, R.S., Phys. Rev. Lett. 67, 1759 (1991).Google Scholar
2.Becker, E.W., Bier, K. and Henkes, W., Zeitscrift for Physik 146, 133 (1956).Google Scholar
3.Yamada, I. and Matsuo, J., Mat. Res. Soc. Symp. Proc. 396, 149 (1996).; ibid 427, 265 (1996).Google Scholar
4.Fenner, D.B., Torti, R.P., Allen, L.P., Toyoda, N., Kirkpatrick, A.R., Greer, J.A., DiFilippo, V. and Hautala, J., Mat. Res. Soc. Symp. Proc. 585, 27 (2000).Google Scholar
5.Insepov, Z. and Yamada, I., Nuc. Instrum. Methods Phys. Res. B 112, 16 (1996).Google Scholar
6.Insepov, Z., Yamada, I., and Sosnowski, M., J. Vac. Sci. Technol. A 15, 981 (1997).Google Scholar
7.Toyoda, N., Hagiwara, N., Matsuo, J. and Yamada, I., Nuc. Instrum. Methods Phys. Res. B 161–163, 980 (2000).Google Scholar
8.Kim, C.-K., Kubota, A. and Economou, D.J., J. Appl. Phys. 86, 6758 (1999).Google Scholar
9.Insepov, Z. and Yamada, I., Mat. Sci. Eng. A 217, 89 (1996).Google Scholar
10.Moseler, M., Rattunde, O., Nordiek, J. and Haberland, H., Nuc. Instrum. Methods Phys. Res. B 164–165, 522 (2000).Google Scholar
11.Fenner, D.B., Hautala, J., Allen, L.P., Greer, J.A., Skinner, W.J. and Budnick, J.I., Mat. Res. Soc. Symp. Proc. 614 (in press).Google Scholar
12.Mirkarimi, P.B. and Sterns, D.G., Appl. Phys. Lett. 77, 2243 (2000).Google Scholar
13.DiFilippo, V., Saigal, A., Fenner, D.B., Allen, L.P., Hirvonen, J.K., Intnl. Conf. Pro. Manuf. Adv. Mat. (THERMEC2000), December 2000, Las Vegas (in press).Google Scholar