Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:18:24.107Z Has data issue: false hasContentIssue false

Simulation of Nanostructure Formation in Thin Polymer Films

Published online by Cambridge University Press:  01 February 2011

Dongchoul Kim
Affiliation:
[email protected], United States
Wei Lu
Affiliation:
[email protected], University of Michigan, Mechanical Engineering, 2250 GGBrown, 2350 Hayward St., Ann Arbor, MI, 48109, United States
Get access

Abstract

A thin polymer film subjected to an electrostatic field may lose stability at the polymer-air interface, leading to uniform self-organized pillars emerging out of the film surface. This paper presents a three dimensional dynamic model to account for the behavior. The coupled diffusion, viscous flow, and dielectric effect are incorporated into a phase field framework. Numerical simulations reveal rich dynamics of the pattern formation process and the substrate effect. The pillar size is insensitive to the film thickness, but the distance between pillars and the growth rate are significantly affected. The study suggests an approach to control structural formation in thin films with a designed electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

1. Schäffer, E., Thurn-Albrecht, T., and Russell, T. P., Nature 403, 874 (2000).Google Scholar
2. Salac, D., Lu, W., Wang, C.-W., et al., Appl. Phys. Lett. 85, 1161 (2004).Google Scholar
3. Chou, S. Y. and Zhuang, L., Vac, J.. Sci. Technol. B 17, 3197 (1999).Google Scholar
4. Schäffer, E., Thurn-Albrecht, T., Russell, T. P., et al., Europhys. Lett. 53, 518 (2001).Google Scholar
5. Wu, L. and Chou, S. Y., Appl. Phys. Lett. 82, 3200 (2003).Google Scholar
6. Lin, Z., Kerle, T., Baker, S. M., et al., J. Chem. Phys. 114, 2377 (2001).Google Scholar
7. Frank, B., Gast, A. P., Russell, T. P., et al., Macromolecules 29, 6531 (1996).Google Scholar
8. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 31, 688 (1959).Google Scholar
9. Lu, W. and Suo, Z., J. Mech. Phys. Solids 49, 1937 (2001).Google Scholar
10. Roths, T., Friedrich, C., Marth, M., et al., Rheol. Acta 41, 211 (2002).Google Scholar
11. Keestra, B. J., Puyvelde, P. C. J. V., Anderson, P. D., et al., Phys. Fluids 15, 2567 (2003).Google Scholar
12. Gurtin, M. E., Polignone, D., and Viñals, J., Math. Mod. Meth. App Sci. 6, 815 (1996).Google Scholar