Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:11:03.741Z Has data issue: false hasContentIssue false

Simulation of Mechanical Elongation and Compression of Nanostructures

Published online by Cambridge University Press:  14 April 2016

Sergio Mejía-Rosales
Affiliation:
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad SN, Cd. Universitaria, San Nicolás de los Garza, N.L, Mexico 66455.
Carlos Fernández-Navarro
Affiliation:
Preparatoria No. 25, Universidad Autónoma de Nuevo León. Francisco Villa y Morelos, Ex hacienda el Canadá, Escobedo, Nuevo León, Mexico 66054.
Get access

Abstract

We present a set of Molecular Dynamics simulations of the axial elongation of gold nanowires, and the compression of silver decahedral nanowires by a carbon AFM tip. We used Sutton and Chen multibody potentials to describe the metallic interactions, a Tersoff potential to simulate the carbon-carbon interactions, and a 6-12 Lennard-Jones potential to describe the metal-carbon interactions. In the elongation simulations, gold nanowires were subjected to strain at several rates, and we concentrated our attention in the specific case of a wire with an atomistic arrangement based on the intercalation of icosahedral motifs forming a Boerdijk-Coxeter (BCB) spiral, and compare it against results of nanowires with fcc structure and (001), (011), and (111) orientations. We found that the BCB nanowire is more resistant to breakage than the fcc nanowires. In the simulations of lateral compression, we made a strain analysis of the trajectories, finding that when a gold decahedral nanowire is compressed by the AFM tip in a direction parallel to a (100) face, the plastic deformation regime is considerably larger than in the case of compression exerted in a direction parallel to a twin plane, where the fracture of the wire comes almost immediately after the elastic range ends. The strain distribution and elastic response in the compression of nanoparticles with different geometries is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gu, X.W., Jafary-Zadeh, M., Chen, D.Z., Wu, Z., Zhang, Y.-W., Srolovitz, D.J., and Greer, J.R., Nano Lett. 14, 5858 (2014).10.1021/nl5027869CrossRefGoogle Scholar
Landman, U., Luedtke, W., Salisbury, B., and Whetten, R., Phys. Rev. Lett. 77, 1362 (1996).10.1103/PhysRevLett.77.1362CrossRefGoogle Scholar
Johnson, C.L., Snoeck, E., Ezcurdia, M., Rodríguez-González, B., Pastoriza-Santos, I., Liz-Marzán, L.M., and Hÿtch, M.J., Nat. Mater. 7, 120 (2007).10.1038/nmat2083CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E., and Kilaas, R., Ultramicroscopy 74, 131 (1998).10.1016/S0304-3991(98)00035-7CrossRefGoogle Scholar
Mejía-Rosales, S., Ponce, A., and José–Yacamán, M., in Nanoalloys, edited by Calvo, F. (Elsevier, Oxford, 2013), pp. 113145.Google Scholar
Velázquez-Salazar, J.J., Esparza, R., Mejía-Rosales, S.J., Estrada-Salas, R., Ponce, A., Deepak, F.L., Castro-Guerrero, C., and José-Yacamán, M., ACS Nano 5, 6272 (2011).10.1021/nn202495rCrossRefGoogle Scholar
Sutton, A.P. and Chen, J., Philos. Mag. Lett. 61, 139 (1990).10.1080/09500839008206493CrossRefGoogle Scholar
Koh, S., Lee, H., Lu, C., and Cheng, Q., Phys. Rev. B 72, (2005).10.1103/PhysRevB.72.085414CrossRefGoogle Scholar
Koh, S.J.A. and Lee, H.P., Nanotechnology 17, 3451 (2006).10.1088/0957-4484/17/14/018CrossRefGoogle Scholar
Kimura, Y., Qi, Y., Cagin, T., and Goddard, W. III, Phys. Rev., to be published (1998).Google Scholar