Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T11:18:46.778Z Has data issue: false hasContentIssue false

Simulation of Heating Cycles for Large Steel Ingots

Published online by Cambridge University Press:  01 March 2016

L.F. Romano Acosta
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, C.P. 66450, México.
O. Zapata
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, C.P. 66450, México.
I. Álvarez
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, C.P. 66450, México.
R. Cerda
Affiliation:
Frisa S.A. de C.V. Santa Catarina, Nuevo León, C.P. 66150, México.
L. Leduc Lezama
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, C.P. 66450, México.
Get access

Abstract

A simulation model is presented, where temperature, phases and internal stresses can be predicted as a function of time during the heating of large steel ingots for forging. Heating cycle measurements and computer simulations are compared for an A105 steel grade 34-Ton tapered ingot. A study of the heat transfer inside a natural gas-fired furnace was carried out to make an estimation of internal stresses due to thermal expansion and phase transformation from α ferrite and pearlite to γ austenite during heating. The model was validated with a second test of an AISI 4330 steel grade 35.4-Ton ingot. The simulation model described can calculate internal stresses in any ingot in order to optimize its heating cycle without compromising ingot internal quality, reducing energy consumption and increasing productivity of the furnace.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fantini, G., Fioletti, F., Formentelli, M., Guarneri, M., Gruttadauria, A., Mapelli, C. and Mombelli, D., Metall. Ital. (3), 47 (2013).Google Scholar
Inoue, T., Nagaki, S., Kishino, T. and Monkawa, M., Ing.-Arch. 50, 315 (1981).CrossRefGoogle Scholar
Cengel, Y.A., Heat Transfer, 2nd ed. (Mc Graw Hill, Mexico, 2004) p. 17.Google Scholar
Chandrasekharan, S., M.Sc. Thesis, Ohio State University, 1992.Google Scholar
Sun, R.C., Metall. Trans. 1, 1881 (1971).CrossRefGoogle Scholar
Brada, G.A. and Van Tyne, C.J., Ind. Heat. Mag. 63, 45 (1996).Google Scholar