Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:32:08.113Z Has data issue: false hasContentIssue false

Simulation of Electromigration Induced Atomic Transport in Al-Cu Alloys

Published online by Cambridge University Press:  10 February 2011

J. P. Dekker
Affiliation:
Max-Planck-Institut fuir Metallforschung, Seestraße 92, D-70174, Stuttgart, GERMANY
C. Elsässer
Affiliation:
Max-Planck-Institut fuir Metallforschung, Seestraße 92, D-70174, Stuttgart, GERMANY
P. Gumbsch
Affiliation:
Max-Planck-Institut fuir Metallforschung, Seestraße 92, D-70174, Stuttgart, GERMANY
Get access

Abstract

To improve the fundamental understanding of alloying effects in electromigration, in particular of Cu addition to Al conductor lines, the electromigration process in the grain boundary of an Al-Cu alloy is simulated using a 2D kinetic Monte Carlo method. These simulations give the fluxes of Al and Cu from microscopic parameters, which determine the probability of each atomic jump. The parameters used in these simulations are the diffusion barriers, the attempt frequencies, the electromigration driving force, the temperature, the Cu concentration, and the binding energy of a Cu-vacancy pair. Values for the electromigration driving force on Al and Cu atoms are calculated ab initio. A very interesting result of the kinetic Monte Carlo studies is that the Al flux is reversed due to the addition of a small amount of Cu if the binding energy for the Cu-vacancy pair is larger than 0.12 eV. Such an Al back flux can explain the strongly inhibiting effect of Cu on electromigration damage initiation and transport in Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Korhonen, M. A., Borgesen, P., Tu, K. N.. and Li, C.-Y., J. Appl. Phys. 73, 3790 (1993).Google Scholar
2. Lloyd, J. R. and Clement, J. J., Appl. Phys. Lett. 69, 2486 (1996).Google Scholar
3. Dekker, J. P., Gumbsch, P., Arzt, E.. and Lodder, A., Phys. Rev. B 59, 7451 (1999).Google Scholar
4. Rosenberg, R., J. Vac. Sci. Tech. 9, 263 (1972).Google Scholar
5. Hoshino, T., Zeller, R.. and Dederichs, P. H., Phys. Rev. B 53, 8971 (1996).Google Scholar
6. Hoshino, T., Zeller, R., Dederichs, P. H.. and Asada, T., Physica A 237–238, 361 (1997).Google Scholar
7. Elsässer, C. et al., J. Phys. Cond. Mat. 2, 4371 (1990).Google Scholar
8. Ho, K.-M., Elsässer, C., Chan, C. T.. and Fähnle, M., J. Phys. Cond. Mat. 4, 5189 (1992).Google Scholar
9. Meyer, B., Elsässer, C.. and Fähnle, M., FORTRAN90 Program for Mixed-basis Pseudopotential Calculations for Crystals, Max-Planck-Institut für Metallforschung Stuttgart (unpublished).Google Scholar
10. Sorbello, R. S., Lodder, A.. and Hoving, S. J., Phys. Rev. B 25, 6178 (1982).Google Scholar
11. Bosvieux, C. and Friedel, J., J. Phys. Chem. Solids 23, 123 (1962).Google Scholar
12. Dekker, J. P., Lodder, A.. and Ek, J. van, Phys. Rev. B 56, 12167 (1997).Google Scholar
13. Sorbello, R. S., Mat. Res. Soc. Symp. Proc. 225, 3 (1991).Google Scholar
14. Martin, G., Bellon, P.. and Soisson, F., Sol. State Phen. 4243, 97 (1995).Google Scholar