Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:40:36.572Z Has data issue: false hasContentIssue false

Simulation of Alkali Migration in β′′-Alumina Under Ion Bombardment

Published online by Cambridge University Press:  15 February 2011

Paulo C.T. D’Ajello
Affiliation:
Departamento de Fisica, CFM/UFSC, P. O. Box 476, 88040-900 Florianópolis, SC, Brazil.
André A. Pasa
Affiliation:
Departamento de Fisica, CFM/UFSC, P. O. Box 476, 88040-900 Florianópolis, SC, Brazil.
Get access

Abstract

Among the different effects induced by ion implantation into dielectric solids, the enhancement of the ionic mobility is the most important regarding practical applications. We simulated the Na migration in a super-ionic conductor, sodium β″-alumina, irradiated with Ar (E=200 keV) at room temperature. A theoretical model to describe the electric field originated in the bombarded region near the surface was developed. The model emphasizes the relation between the electric field and the energy deposited by the ions in the ionization process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Usher, D. M., J. Phys. C: Sol. Stat. Phys., 14, 2039 (1981).Google Scholar
2 Miotello, A. and Mazzoldi, P. J., J. Phys. C: Sol. Stat. Phys., 15, 5615 (1982).Google Scholar
3 Miotello, A., Phys. Lett., 103A, 279 (1984).Google Scholar
4 Mazzoldi, P., Nucl. Instr. Meth., 209/210, 1089 (1983).Google Scholar
5 Mea, G. Della, DeMarchi, G., Grinzato, E., Mazzoldi, A., Mazzoldi, P. and Miotello, A., J. Phys. C: Sol. Stat. Phys., 16, 6329 (1983).Google Scholar
6 Achete, C. A., Freire, F. L. Jr. and Mariotto, G., J. Phys. D: Appl. Phys., 24, 1009 (1991).Google Scholar
7 Freire, F. L. Jr., Mariotto, G. and Miotello, A., Rad. Eff. Def. Sol., 118, 287 (1991).Google Scholar
8 Mariotto, G., Miotello, A., Mea, G. Della and Freire, F. L. Jr., Nucl. Instr. Meth. B46 107 (1990).Google Scholar
9 Ziegler, F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
10 Dienes, E. J. and Damask, A. C., J. Appl. Phys., 29, 1713 (1958).Google Scholar
11 D’Ajello, P. C. T. and Scherer, C., J. Phys. D: Appl. Phys., 25, 1780 (1992).Google Scholar
12 D’Ajello, P. C. T. and Scherer, C., Rad. Eff. Def. Sol., 124, 281 (1992).Google Scholar
13 Gibson, J. B., Golan, A. N., Milgram, M. and Vineyard, G. H., Phys. Rev., 120, 1229 (1960).Google Scholar