Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T18:17:48.577Z Has data issue: false hasContentIssue false

Simulation By Cellular Automata Of The (Re) Crystallization Of AMatrix Containing An Inert Second Phase

Published online by Cambridge University Press:  15 February 2011

C. F. Pezzee
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
D. C. Dunand
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Two-dimensional cellular automata simulations were carried out to study thecase of the crystallization (or recrystallization) of a matrix containing aninert, immobile second phase. A range of particle area fractions and aspectratios were investigated under continuous grain nucleation conditions,assuming that the effect of particles is limited to geometric impingementupon contact with the growing grains. Systematic deviations from theclassical Johnson, Mehl, Avrami, Kolmogo-rov equation for single-phasematerials are observed with increasing particle aspect ratio and particlefraction. Inert particles also influence both mean size and mean aspectratio of the final grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Porter, D. A. and Easterling, K. E., Phase Transformations in metals and Alloys. (Van Nostrand Reinhold, London, 1989), p. 288.Google Scholar
2. Marthinsen, K., Furu, T., Nes, E., and Ryum, N., in Simulation and Theory of Evolving Microstructures. edited by Anderson, M.P. and Rollett, A.D. (TMS, Warrendale, 1990), p. 87.Google Scholar
3. Frost, H. J. and Thompson, C. V., Acta Metall. 35, 529 (1987).Google Scholar
4. Humphreys, F. J., Mat. Sci. Technol. 8, 135 (1992).Google Scholar
5. Juul Jensen, D., Scripta Metall. Mater. 27, 1551 (1992).Google Scholar
6. Manin, K. W., Hanson, K., and Morris, J. W., Acta Metali. 28, 443 (1980).Google Scholar
7. Marthinsen, K., Lohne, O., and Nes, E., Acta Metall. 37, 135 (1989).Google Scholar
8. Saetre, T.O., Hunderi, O., and Nes, E., Acta Metall. 34, 981 (1986).Google Scholar
9. Nes, E., Ryum, N., and Hunderi, O., Acta Metali. 33, 11 (1985).Google Scholar
10. Furu, T., Marthinsen, K., and Nes, E., Mat. Sci. Technol. 6, 1093 (1990).Google Scholar
11. Srolovitz, D. J., Grest, G. S., and Anderson, M. P., Acta Metali. 34, 1833 (1986).Google Scholar
12. Srolovitz, D. J., Grest, G. S., Anderson, M. P., and Rollett, A. D., Acta Metali. Mater. 36, 2115 (1988).Google Scholar
13. Rollett, A. D., Srolovitz, D. J., Anderson, M. P., and Doherty, R. D., Acta Metali. Mater. 40, 3475 (1992).Google Scholar
14. Rollett, A. D., Srolovitz, D. J., Doherty, R. D., Anderson, M. P., and Grest, G. S., in Simulation and Theory of Evolving Microstructures, edited by Anderson, M.P. and Rollett, A.D. (TMS, Warrendale, 1990), p. 103.Google Scholar
15. Hesselbarth, H. W. and Göbel, I. R., Acta Metall. Mater. 39, 2135 (1991).Google Scholar
16. Rappaz, M. and Gandin, C. A., Acta Metall. Mater. 41, 345 (1993).Google Scholar
17. Pezzee, C. F. and Dunand, D. C., Acta Metall. Mater., accepted.Google Scholar
18. Humphreys, F. J., Scripta Metall. Mater. 27, 1551 (1992).Google Scholar