Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:12:11.772Z Has data issue: false hasContentIssue false

Simulating Radiation-Induced Defect Formation in Pyrochlores

Published online by Cambridge University Press:  21 February 2013

David S.D. Gunn
Affiliation:
Scientific Computing Department, Science & Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, WA4 4AD, U.K.
John A. Purton
Affiliation:
Scientific Computing Department, Science & Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, WA4 4AD, U.K.
Ilian T. Todorov
Affiliation:
Scientific Computing Department, Science & Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, WA4 4AD, U.K.
Get access

Abstract

The accuracy and robustness of new Buckingham potentials for the pyrochlores Gd2Ti2O7 and Gd2Zr2O7 is demonstrated by calculating and comparing values for a selection of point defects with those calculated using a selection of other published potentials and our own ab inito values. Frenkel pair defect formation energies are substantially lowered in the presence of a small amount of local cation disorder. The activation energy for oxygen vacancy migration between adjacent O48f sites is calculated for Ti and Zr pyrochlores with the energy found to be lower for the non-defective Ti than for the Zr pyrochlore by ∼0.1 eV. The effect of local cation disorder on the VO48f → VO48f migration energy is minimal for Gd2Ti2O7, while the migration energy is lowered typically by ∼43 % for Gd2Zr2O7. As the healing mechanisms of these pyrochlores are likely to rely upon the availability of oxygen vacancies, the healing of a defective Zr pyrochlore is predicted to be faster than for the equivalent Ti pyrochlore.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gunn, D.S.D. et al. ., J. Mater. Chem. 22, 4675 (2012)10.1039/c2jm15264aCrossRefGoogle Scholar
Purton, J.A. and Allan, N.L., J. Mater. Chem. 12, 2923 (2002)10.1039/b201111pCrossRefGoogle Scholar
Devanathan, R., Weber, W.J. and Gale, J.D., Energy Environ. Sci., 3, 1551 (2010)10.1039/c0ee00066cCrossRefGoogle Scholar
Wilde, P.J. and Catlow, C.R.A., Solid State Ionics 112, 173 (1998)10.1016/S0167-2738(98)00190-8CrossRefGoogle Scholar
Gale, J.D., J. Chem. Soc., Faraday Trans., 93, 629 (1997)10.1039/a606455hCrossRefGoogle Scholar
Mott, N.F. and Littleton, M.J., Trans. Faraday Soc. 34, 485 (1938)10.1039/tf9383400485CrossRefGoogle Scholar
Henkelman, G. and Jónsson, H., J. Chem. Phys. 113, 9978 (2000)10.1063/1.1323224CrossRefGoogle Scholar
Kästner, J. et al. ., J. Phys. Chem. A 113, 11856 (2009)10.1021/jp9028968CrossRefGoogle Scholar
Liu, D.C. and Nocedal, J., Math. Program. 45, 503 (1989)10.1007/BF01589116CrossRefGoogle Scholar
Anglade, P.-M. et al. ., Computer Phys. Commun. 180, 2582 (2009)Google Scholar
Burke, K., Perdew, J.P. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
Kresse, G. and Joubert, J., Phys. Rev. B 59, 1758 (1999)10.1103/PhysRevB.59.1758CrossRefGoogle Scholar
Broyden, C.G., J. Inst. Math. App. 6, 76 (1970); R. Fletcher, Comp. J. 13, 317(1970); D. Goldfarb, Math. Comp. 24, 23 (1970); D.F. Shanno, Math. Comp. 24, 647 (1970) 10.1093/imamat/6.1.76CrossRefGoogle Scholar
Knop, O., Brisse, F. and Castelliz, L., Can. J. Chem. 47, 971 (1969)10.1139/v69-155CrossRefGoogle Scholar
Bush, T.S. et al. ., J. Mater. Chem. 4, 831 (1994)10.1039/jm9940400831CrossRefGoogle Scholar
Minervini, L., Grimes, R.W. and Sickafus, K.E., J. Am. Ceram. Soc. 83, 1873 (2000)10.1111/j.1151-2916.2000.tb01484.xCrossRefGoogle Scholar
Williford, R.E. et al. ., J. Electroceram 3, 409 (1999)10.1023/A:1009978200528CrossRefGoogle Scholar
Pirzada, M. et al. ., Solid State Ionics 140, 201 (2001)10.1016/S0167-2738(00)00836-5CrossRefGoogle Scholar
Tuller, H.L., J. Phys. Chem. Solids 55, 1393 (1994)10.1016/0022-3697(94)90566-5CrossRefGoogle Scholar
Kramer, S., Spears, S. and Tuller, H.L., Solid State Ionics 72, 59 (1994)10.1016/0167-2738(94)90125-2CrossRefGoogle Scholar
van Dijk, M.P., de Vries, K.J. and Burggraaf, A.J., Solid State Ionics 9, 913 (1983)10.1016/0167-2738(83)90110-8CrossRefGoogle Scholar
Moon, P.K. and Tuller, H.L., MRS Online Proc. Libr. 135, 149 (1989)10.1557/PROC-135-149CrossRefGoogle Scholar
Burggraaf, A.J., van Dijk, T. and Veerkerk, M.J., Solid State Ionics 5, 519 (1981)10.1016/0167-2738(81)90306-4CrossRefGoogle Scholar