Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T17:00:01.902Z Has data issue: false hasContentIssue false

Simulating Constant Current STM Images of the Rutile TiO2 (110) Surface for Applications in Solar Water Splitting

Published online by Cambridge University Press:  27 February 2013

F. F. Sanches
Affiliation:
Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington London SW7 2AZ, UK
G. Mallia
Affiliation:
Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington London SW7 2AZ, UK
N. M. Harrison
Affiliation:
Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington London SW7 2AZ, UK STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
Get access

Abstract

Solar water splitting has shown promise as a source of environmentally friendly hydrogen fuel. Understanding the interactions between semiconductor surfaces and water is essential to improve conversion efficiencies of water splitting systems. TiO2 has been widely adopted as a reference material and rutile surfaces have been studied experimentally and theoretically. Scanning Tunneling Microscopy (STM) is commonly used to study surfaces, as it probes the atomic and electronic structure of the surface layer. A systematic and transferable method to simulate constant current STM images using local atomic basis set methods is reported. This consists of adding more diffuse p and d functions to the basis sets of surface O and Ti atoms, in order to describe the long range tails of the conduction and valence bands (and, thus, the vacuum above the surface). The rutile TiO2 (110) surface is considered as a case study.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gratzel, M., Nature 414, 338 (2001).CrossRefGoogle Scholar
Fujishima, A. and Honda, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
Tang, J., Durrant, J. R., and Klug, D. R., Journal of the American Chemical Society 130, 13885 (2008).CrossRefGoogle Scholar
Cowan, A., Tang, J., Leng, W., Durrant, J., and Klug, D., The Journal of Physical Chemistry C 114, 4208 (2010).CrossRefGoogle Scholar
Peir, A. M., Colombo, C., Doyle, G., Nelson, J., Mills, A., and Durrant, J. R., The Journal of Physical Chemistry B 110, 23255 (2006).CrossRefGoogle Scholar
Patel, M., Mallia, G., and Harrison, N.M., in NSTI NANOTECH 2011, TECHNICAL PROCEEDINGS - MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, edited by Laudon, M and Romanowicz, B, (CRC PRESS-TAYLOR & FRANCIS GROUP, 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487–2742 USA, 2011), ISBN, Nanotechnology Conference and Expo (Nanotech 2011), Boston, MA, JUN 13-16, 2011.Google Scholar
Patel, M., Mallia, G., Liborio, L., and Harrison, N. M., Phys. Rev. B 86, 045302 (2012).CrossRefGoogle Scholar
Diebold, U., Lehman, J., Mahmoud, T., Kuhn, M., Leonardelli, G., Hebenstreit, W., Schmid, M., and Varga, P., Surface science 411, 137 (1998).CrossRefGoogle Scholar
Diebold, U., Anderson, J. F., Ng, K.-O., and Vanderbilt, D., Phys. Rev. Lett. 77, 1322 (1996).CrossRefGoogle Scholar
Muñoz, D., Harrison, N. M., and Illas, F., Phys. Rev. B 69, 085115 (2004).CrossRefGoogle Scholar
Muscat, J., Wander, A., and Harrison, N., Chemical Physics Letters 342, 397 (2001).CrossRefGoogle Scholar
Mallia, G. and Harrison, N. M., Phys. Rev. B 75, 165201 (2007).CrossRefGoogle Scholar
Wilson, N. C., Russo, S. P., Muscat, J., and Harrison, N. M., Phys. Rev. B 72, 024110 (2005).CrossRefGoogle Scholar
Mallia, G., Orlando, R., Llunell, M., and Dovesi, R., in Computational Materials Science, edited by Catlow, C. and Kotomin, E. (IOS Press, Amsterdam, 2003), vol. 187 of NATO SCIENCE SERIES, III: Computer and Systems Sciences , pp. 102121.Google Scholar
Di Valentin, C., Pacchioni, G., and Selloni, A., Phys. Rev. Lett. 97, 166803 (2006).CrossRefGoogle Scholar
Corà, F., Alfredsson, M., Mallia, G., Middlemiss, D., Mackrodt, W., Dovesi, R., and Orlando, R., in Principles and Applications of Density Functional Theory in Inorganic Chemistry II, edited by Kaltsoyannis, N. and McGrady, J. (Springer Berlin / Heidelberg, 2004), vol. 113, pp. 171232.CrossRefGoogle Scholar
De Fusco, G. C., Pisani, L., Montanari, B., and Harrison, N. M., Phys. Rev. B 79, 085201 (2009).CrossRefGoogle Scholar
Liborio, L., Mallia, G., and Harrison, N., Phys. Rev. B 79, 245133 (2009).CrossRefGoogle Scholar
Bailey, C. L., Liborio, L., Mallia, G., Tomić, S., and Harrison, N. M., Phys. Rev. B 81, 205214 (2010).CrossRefGoogle Scholar
Liborio, L. M., Bailey, C. L., Mallia, G., Tomic, S., and Harrison, N. M., Journal of Applied Physics 109, 023519 (pages 9) (2011).CrossRefGoogle Scholar
Ahmad, E. A., Liborio, L., Kramer, D., Mallia, G., Kucernak, A. R., and Harrison, N. M., Phys. Rev. B 84, 085137 (2011).CrossRefGoogle Scholar
Dovesi, R., Saunders, V., Roetti, C., Orlando, R., Zicovich-Wilson, C., Pascale, F., Civalleri, B., Doll, K., Harrison, N., Bush, I., et al. ., Universit`a di Torino (Torino, 2006).Google Scholar
Bush, I. J., Tomi, S., Searle, B. G., Mallia, G., Bailey, C. L., Montanari, B., Bernasconi, L., Carr, J. M., and Harrison, N. M., Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 467, 2112 (2011), http://rspa.royalsocietypublishing.org/content/early/2011/04/06/rspa.2010.0563.full.pdf+html.CrossRefGoogle Scholar
Di Valentin, C., The Journal of chemical physics 127, 154705 (2007).CrossRefGoogle Scholar
Becke, A., Chem. Phys 98, 5648 (1993).Google Scholar
Labat, F., Baranek, P., Domain, C., Minot, C., and Adamo, C., The Journal of chemical physics 126, 154703 (2007).CrossRefGoogle Scholar
Pisani, C., Dovesi, R., and Roetti, C., Hartree-Fock ab initio Treatment of Crystalline Systems, vol. 48 of Lecture Notes in Chemistry (Springer Verlag, Heidelberg, 1988).CrossRefGoogle Scholar
Muscat, J., Swamy, V., and Harrison, N., Physical Review B 65, 224112 (2002).CrossRefGoogle Scholar
Cangiani, G., Baldereschi, A., Posternak, M., and Krakauer, H., Physical Review B 69, 121101 (2004).CrossRefGoogle Scholar
Diebold, U., Applied Physics A: Materials Science & Processing 76, 681 (2003).CrossRefGoogle Scholar
Fischer, D. W., Phys. Rev. B 5, 4219 (1972).CrossRefGoogle Scholar
Hellwege, K. and Madelung, O., Electron Paramagnetic Resonance, Springer-Verlag, Berlin (1984).CrossRefGoogle Scholar
Martin, R. and Illas, F., Physical review letters 79, 1539 (1997).CrossRefGoogle Scholar
de PR Moreira, I, Illas, F., and Martin, R., Physical Review B 65, 155102 (2002).CrossRefGoogle Scholar
Tersoff, J. and Hamann, D., Physical Review B 31, 805 (1985).CrossRefGoogle Scholar
Hebenstreit, W., Ruzycki, N., Herman, G., Gao, Y., and Diebold, U., Physical Review B 62, 16334 (2000).CrossRefGoogle Scholar