Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:58:20.816Z Has data issue: false hasContentIssue false

A Simple Technique for Sub-10 nm Planar Nanofluidic Channel Fabrication

Published online by Cambridge University Press:  31 January 2011

Chunrong Song
Affiliation:
[email protected], Clemson University, ECE, Clemson, South Carolina, United States
Pingshan Wang
Affiliation:
[email protected], Clemson University, ECE, Clemson, South Carolina, United States
Get access

Abstract

A simple and low-cost technique is demonstrated to fabricate sub-10 nm planar nanofluidic channels. Native oxide on silicon surface is etched with a multiple hydrofluoric (HF)-etch / SiO2-regrowth process. Shallow Si trenches with 3 nm to 24 nm depths are obtained at an etch rate of 1 nm per HF dip. The trenches are uniform with a surface r.m.s. roughness of 0.4 - 0.6 nm. A low-temperature and low-voltage anodic wafer bonding process is then used to form planar nanofluidic channels. Minimum aspect ratio (depth/width) of the fabricated sub-10 nm nanochannels is around 0.001-0.002.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lim, W. Ng, S. Y. Lee, C. Feng, Y. P. and Maarel, J. R. C. van der, J. Chem. Phys. 129 6 (2008).Google Scholar
2N. Durand, F. Y. Saveriades, E. and Renaud, P. Anal. Bioanal. Chem. 394 421 (2009).Google Scholar
3 Hoang, H. T. I. M. Segers-Nolten, Berenschot, J. W. Boer, M. J. de, Tas, N. R. Haneveld, J. and Elwenspoek, M. C. J. Micromech. Microeng. 19 10 (2009).Google Scholar
4 Heyden, F. H. J. van der, Bonthuis, D. J. Stein, D. Meyer, C. and Dekker, C. Nano Lett. 6 2232 (2006).Google Scholar
5 Karnik, R. Fan, R. Yue, M. Li, D. Y. Yang, P. D. and Majumdar, A. Nano Lett. 5 943 (2005).Google Scholar
6 Daiguji, H. Oka, Y. and Shirono, K. Nano Lett. 5 2274 (2005).Google Scholar
7 Xia, Q. F. Morton, K. J. Austin, R. H. and Chou, S. Y. Nano Lett. 8 3830 (2008).Google Scholar
8 Strychalski, E. A. Stavis, S. M. and Craighead, H. G. Nanotechnology 19 31530 (2008).Google Scholar
9 Cao, H. Yu, Z. N. Wang, J. Tegenfeldt, J. O. Austin, R. H. Chen, E. Wu, W. and Chou, S. Y. Appl. Phys. Lett. 81 174 (2002).Google Scholar
10 Gu, J. Gupta, R. Chou, C. Wei, Q, and Zenhausern, F, Lab on a Chip 7 1198 (2007).Google Scholar
11 Haneveld, J. Tas, N. R. Brunets, N. Jansen, H. V. and Elwenspoek, M. J. Appl. Phys. 104 014309 (2008).Google Scholar
12 Mao, P. and Han, J. Y. Lab on a Chip 5 837 (2005).Google Scholar
13 Schoch, R. B. Han, J. Y. and Renaud, P. Rev. Mod. Phys. 80 839 (2008).Google Scholar
14 Perry, J. L. and Kandlikar, S. G. Microfluid. Nanofluid. 2 185 (2006).Google Scholar
15 Morita, M. Ohmi, T. Hasegawa, E. Kawakami, M. and Ohwada, M. J. Appl. Phys. 68 1272 (1990).Google Scholar
16 Dragoi, V. Farrens, S. Lindner, P. and Weixlberger, J. 2004 International Semiconductor Conference, CAS 2004 Proceedings., 2004, pp. 199.Google Scholar
17 Thamdrup, L. H. Persson, F. Bruus, H. Kristensen, A. and Flyvbjerg, H. Appl. Phys. Lett. 91 163505 (2007).Google Scholar