Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:30:59.345Z Has data issue: false hasContentIssue false

Silver nanodiscs for light scattering in thin epitaxial silicon solar cells: influence of the disc radius

Published online by Cambridge University Press:  20 March 2012

O. El Daif*
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
L. Tong
Affiliation:
Applied Physics, Chalmers University of Technology, Göteborg 41296 Sweden
B. Figeys
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
S. Jain
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
V. D. Miljkovic
Affiliation:
Applied Physics, Chalmers University of Technology, Göteborg 41296 Sweden
V. Depauw
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
D. Vercruysse
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
K. Van Nieuwenhuysen
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
A. Dmitriev
Affiliation:
Applied Physics, Chalmers University of Technology, Göteborg 41296 Sweden
P. Van Dorpe
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
I. Gordon
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
F. Dross
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

The effect of silver nanoparticles showing localised plasmonic resonances on the efficiency of thin film silicon solar cells is studied. Silver (Ag) nanodiscs were deposited on the surface of silicon cells grown on highly doped silicon substrates, through hole-mask colloidal lithography, which is a low-cost and bottom-up technique. The cells have no back reflector in order to exclusively study the effect of the front surface on their properties. Cells with nanoparticles were compared with both bare silicon cells and cells with an antireflection coating. We optically observe a resonance showing an absorption increase controllable by the disc radius. We also see an increase in efficiency with respect to bare cells, but we see a decrease in efficiency with respect to cells with an antireflection coating due to losses at wavelengths below the plasmon resonance. As the material properties are not notably affected by the particles deposition, the loss mechanism is an important absorption in the nanoparticles. We confirm this by numerical simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

3

now at Institute of Physics, Chinese Academy of Sciences, Beijing, China

References

REFERENCES

1. Poortmans, J., EUPVSEC (Hamburg, 2010)Google Scholar
2. El Daif, O., Drouard, E., Gomard, G., Kaminski, A., Fave, A., Lemiti, M., Ahn, S., Kim, S., Roca i Cabarrocas, P., Jeon, H., and Seassal, C., Opt. Expr. 18, A293 (2010).Google Scholar
3. Rockstuhl, C. and Lederer, F. Appl. Phys. Lett. 94, 213102 (2009).Google Scholar
4. Pala, R., White, J., Barnard, E., Liu, J., Brongersma, M. L., Adv. Mater. 21, 3504 (2009).Google Scholar
5. Diukman, I. and Orenstein, M., Solmat 95, 2628 (2011).Google Scholar
6. Beck, F., Polman, A., and Catchpole, K. R., J. Appl. Phys. 105, 114310 (2009).Google Scholar
7. Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., and Tow Chong, C., Nat. Mat. 9, 707 (2010).Google Scholar
8. Van Nieuwenhuysen, K., Récaman Payo, M., Kuzma-Filipek, I., Van Hoeymissen, J., and Poortmans, J., Proc of the 24th EUPVSEC (Hamburg, 2009).Google Scholar
9. Van Nieuwenhuysen, K., Duerinckx, F., Kuzma, I., Recaman Payo, M., Beaucarne, G., and Poortmans, J., Thin Solid Films 517, 383 (2008).Google Scholar
10. Henson, J., DiMaria, J., and Paiella, R. J. Appl. Phys. 106, 093111 (2009).Google Scholar
11. Beck, F., Verhagen, E., Mokkapati, S., Polman, A., and Catchpole, K. R., Opt. Expr. 19, A146 (2011).Google Scholar
12. Figeys, B. and El Daif, O., arXiv:1111.3791v1 [cond-mat.mes-hall].Google Scholar
13. Hägglund, C., Zäch, M., Petersson, G., and Kasemo, B., Appl. Phys. Lett. 92, 053110 (2008).Google Scholar
14. Fredriksson, H., Adv. Mater. 19, 4297 (2007).Google Scholar
15. Figeys, B., Masters thesis, KUL Leuven, Belgium (2011).Google Scholar
16. Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z., and Green, M. A., J. Appl. Phys. 109, 073105 (2011).Google Scholar
17. Spinelli, P., van Lare, C., Verhagen, E., and Polman, A., Optics Express, 19, A303 (2011).Google Scholar
18. Ouyang, Z. Pillai, S., Beck, F., Kunz, O., Varlamov, S., Catchpole, K. R., Campbell, P., and Green, M. A., Appl. Phys. Lett. 96, 261109 (2010).Google Scholar
19. Depauw, V., Qiu, Y., Van Nieuwenhuysen, K., Gordon, I. and Poortmans, J., Progr. in PV: Res. and Appl. 19, 844850 (2011).Google Scholar