Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T10:48:43.567Z Has data issue: false hasContentIssue false

A Silicon Nitride Based Shallow Trench Isolation with Side-Gate for CMOS Integration with MEMS Components for System-On-Chip Applications

Published online by Cambridge University Press:  01 February 2011

Ali Gokirmak
Affiliation:
School of Electrical and Computer Engineering, Cornell University, Ithaca NY 14853, U.S.A.
Sandip Tiwari
Affiliation:
School of Electrical and Computer Engineering, Cornell University, Ithaca NY 14853, U.S.A.
Get access

Abstract

We have developed a hydrofluoric acid (HF) resistant, composite shallow trench isolation (STI) process for MOSFETs utilizing silicon nitride as isolation material for on-chip integration of micro-electro-mechanical (MEMS) resonators and CMOS devices. Peripheral leakage currents in silicon nitride isolated MOSFETs are suppressed by employing an independently controlled polysilicon side-gate, surrounding the active area of the devices. Electrostatic control of the threshold voltage at the device periphery alleviates the need for edge implants, resulting in increased thermal budget. Compatibility with HF release processes and high temperature anneal cycles allows integration of MEMS components in close proximity to CMOS devices for system-on-chip applications. nMOSFET devices fabricated using this composite STI process show excellent device characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, S.-S.; Lin, Y.-W.; Xie, Y.; Ren, Z., Nguyen, C.T.-C, 17th IEEE International Conference on Micro Electro Mechanical Systems, 821824 (2004).Google Scholar
2. Buhler, J., Steiner, F.-P., Baltes, H., J. Micromech. Microeng, 7, R1R13 (1997).Google Scholar
3. Howe, R. T., J. Vac. Sci. Technol. B 6 (6) 18091813 (1988).Google Scholar
4. Sallagoity, P., Ada-Hanifi, M., Paoli, M., Haond, M., 43 (11) 19001906 (1996).Google Scholar
5. Verzellesi, G., Betta, G. F.D., Bosisio, L., Boscardin, M., Pignatel, G. U., Soncini, G., IEEE Trans. Elec. Dev., 46 (4) 817820 (1999).Google Scholar
6. VanDerVoorn, P., Gan, D., Krusius, J. P., IEEE Trans. Elec. Dev, 47 (6), 11751182, (2000).Google Scholar
7. Gokirmak, A., Tiwari, S., IEE Electronics Letters (2004) (Submitted)Google Scholar
8. Huang, L., Lai, P. T., Xu, J. P., Cheng, Y. C., Microelectronics Reliablity, 38, 14251431 (1998)Google Scholar
9. Hisamoto, D., Lee, W.-C., Kedzierski, J., Anderson, E., Takeuchi, H., Asano, K., King, T. J., Bokor, J., Hu, C., IEDM Tech. Dig., 10321034 (1998)Google Scholar
10. Doyle, B. S., Datta, S., Doczy, M., Hareland, S., Jin, B., Kavalieros, J., Linton, T., Murthy, A., Rios, R., and Chau, R., IEEE Elec. Dev. Let., 24 (4) (2003)Google Scholar