Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:22:04.442Z Has data issue: false hasContentIssue false

Silicon Nanowires: Doping Dependent N- and P- Channel Fet Behavior

Published online by Cambridge University Press:  01 February 2011

Kumhyo Byon
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
John E. Fischer
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
Kofi W. Adu
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16803, U.S.A.
Peter. C. Eklund
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16803, U.S.A.
Get access

Abstract

The electrical transport properties of field effect transistor (FET) devices made of silicon nanowires (SiNWs) synthesized by pulsed laser vaporization (PLV) were studied. From as-grown PLV-SiNW FET, we found p-channel FET behavior with low conductance. To improve conductance, spin on glass (SOG) and vapor doping were used to dope phosphorus and indium into SiNW, respectively. From doping after synthesis, we could successfully make both n- and p-channel FET devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cui, Y. and Lieber, C. M., Science 291, 851 (2001)Google Scholar
2. Melnikof, D. V. and Chelikowsky, J. R., Phys. Rev. Lett. 92(4), 046802 (2002).Google Scholar
3. Cui, Y., Duan, X, Hu, J. and Lieber, C. M., J. Phys. Chem. B. 104(22) 5213 (2000).Google Scholar
4. Barsotti, R. J., Fischer, J. E., Lee, C., Mahmood, J., Adu, C. K. W., Eklund, P. C., Appl. Phys. Lett. 81(15), 2866 (2002)Google Scholar
5. Hartiti, B., Slaoui, A. and Muller, J. C., J. App. Phys. 71(11) 5474 (1992)Google Scholar
6. Kolluri, S. V. and Chandorkar, A. N., J. Vac. Sci. Tech. A. 11(5) 2849 (1993)Google Scholar
7. Radosavlievic, M., Freitag, M., Thadani, K. V., and Johnson, A. T., Nano Lett. 2(7) 761 (2002)Google Scholar
8. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981) p. 851 Google Scholar
9. Takagi, S., Toriumi, A., Iwase, M., and Tango, H., IEEE Trans Elec Dev. 41(12) 2357 (1994)Google Scholar
10. Baumer, A., Stutzmann, M., Brandt, M. S., Au, F. C. K. and Lee, S. T., Appl. Phys. Lett. 85(6), 943 (2004)Google Scholar