Article contents
Silicon homoepitaxy using tantalum-filament hot-wire chemical vapor deposition
Published online by Cambridge University Press: 01 February 2011
Abstract
We have studied silicon films grown epitaxially on silicon wafers using hot-wire chemical vapor deposition (HWCVD) with a tantalum filament. Silicon films were grown on (100)-oriented hydrogen terminated silicon wafers at temperatures from 175°C to 480°C, using a Ta filament 5 cm from the substrate to decompose pure SiH4 gas. The progression of epitaxy was monitored using real-time spectroscopic ellipsometry (RTSE). Analysis using RTSE, transmission electron microscopy (TEM), and scanning electron microscopy shows that at a characteristic thickness, hepi all of the films break down into a-Si:H cones. Below 380°C, both hepi and the thickness of the transition to pure a-Si:H increase with increasing temperature. Above 380°C, hepi was not observed to increase further but TEM images show fewer defects in the epitaxial regions. Secondary ion-mass spectrometry shows that the oxygen concentration remains nearly constant during growth (<1018 cm-3). The hydrogen concentration is found to increase substantially with film thickness from 5·1018 to 5·1019 cm-3, likely due to the incorporation of hydrogen into the a-Si:H cones that grow after the breakdown of epitaxy.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 5
- Cited by