No CrossRef data available.
Article contents
Silicon Homoepitaxy at 300°C Using ArF Excimer Laser Photolysis of Disilane
Published online by Cambridge University Press: 26 February 2011
Abstract
Photolysis of Si2H6 by an ArF excimer laser has been used to deposit Si homoepitaxial layers at temperatures as low as 300°C. The chemical vapor deposition process at growth rates from 0.5-4 Å/minute is performed in an ultra-high vacuum chamber which, along with an ex situ HF dip and a novel in situ hydrogen clean using laser excitation, results in minimization of oxygen and carbon contamination which inhibits Si epitaxy. The growth involves photolytic decomposition of Si2H6 and the generation and adsorption of SiH2 precursors on the hydrogenated Si surface, which is the rate limiting step. Growth rates are observed to vary proportionally with laser power. Very low defect density films in terms of stacking faults and dislocation loops (less than 105 cm−2), and excellent crystallinity have been deposited as confirmed by Schimmel etching and Nomarski microscopy, transmission electron microscopy, electron diffraction and in situ reflection high energy electron diffraction.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991