Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:32:01.687Z Has data issue: false hasContentIssue false

Silicon Carbide Nanowire Heterostructures Constructed from Released Iron Catalysis

Published online by Cambridge University Press:  01 February 2011

Zhenyu Liu
Affiliation:
[email protected], University of Pittsburgh, Department of Mechanical Engineering and Materails Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Vesna Srot
Affiliation:
[email protected], Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
Peter A. van Aken
Affiliation:
[email protected], Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
Manfred Rühle
Affiliation:
[email protected], Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
Judith C. Yang
Affiliation:
[email protected], University of Pittsburgh, Department of Mechanical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Get access

Abstract

Herein, we present the capability of creating silicon carbide (SiC) nanowires and branched nanostructures via a released cataltic process. Core-shell structured carbon-encapsulated iron nanoparticles were used as catalysts for SiC nanostructures formations by vapor-solid reaction. Various SiC nanostructures, including SiC nanocones, biaxial SiC-SiC composite nanowires, SiC-Fe-SiC junctions, Y, T branched SiC nanowires, and other complex heterostructures were observed from this process. It was demonstrated that the encapsulated iron could gradually migrate out of the carbon shell, and the released iron nanoparticles catalyzes the SiC nanostructures formation. Their morphologies and microstructures were investigated by different techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their formation mechanisms are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H. Adv. Mater. 2003, 15, 353389.Google Scholar
2. Pan, Z. W., Dai, Z. R., Wang, Z. L. Science, 2001, 291, 19471949 Google Scholar
3. Law, M., Goldberger, J., Yang, P. Annu. Rev. Mater. Res. 2004, 34, 83122.Google Scholar
4. Wu, Y. Yan, H., Huang, M., Messer, B., Song, J. H., Yang, P. Chem. Eur. J. 2002, 8, 12611268.Google Scholar
5. Stupp, S. I., LeBonheur, V., Walker, K., Li, L. S., Huggins, K. E., Keser, M., Amstutz, A., Science 1997,276, 384389 Google Scholar
6. Bauer, M., Kador, L., J. Phys. Chem. B 2003, 107, 1430114305.Google Scholar
7. Sun, X., Li, C., Wong, W., Wong, N., Lee, C., Lee, S., Teo, B., J. Am. Chem. Soc. 2002, 124, 1446414471.Google Scholar
8. Pan, Z., Lai, H., Au, F. C. K., Duan, X., Zhou, W., Shi, W., Wang, N., Lee, C., Wong, N., Lee, S., Xie, S., Adv. Mater. 2000, 12, 11861190.Google Scholar
9. Meng, G., Zhang, L., Mo, C., Zhang, S., Qin, Y., Feng, S., Li, H., J. Mater. Res. 1998, 13, 25332538.Google Scholar
10. Liu, Z., Ci, L., Jin-Phillipp, N. Y., Rühle, M., J. Phys. Chem. C 2007, 111, 1251712521.Google Scholar
11. Ryu, Z., Zheng, J., Wang, M., Zhang, B., Carbon, 2001, 39, 19291930.Google Scholar
12. Ryu, Z., Zheng, J., Wang, M., Zhang, B., Carbon, 2002, 40, 715720.Google Scholar
13. Zhou, X., Wang, N., Lai, H., Peng, H., bello, I., Wong, N., Lee, C., Lee, S., Appl. Phys. Lett. 1999, 74,39423944.Google Scholar
14. Kim, H. Y., Park, J., Yang, H., Chem Commun. 2003, 2, 256257.Google Scholar
15. Hu, J. Q., Lu, Q. Y., Tang, K. B., Deng, B., Jiang, R. R., Yu, W. C., Zhou, G. E., Liu, X. M., Wu, J. X., J. Phys. Chem. B 2000, 104, 52515254.Google Scholar
16. Shi, W. S., Zheng, Y. F., Peng, H. Y., Wang, N., Lee, C. S., Lee, S. T., J. Am. Cera. Soc. 2000, 83, 32283231.Google Scholar
17. Wu, Z. S., Deng, S. Z., Xu, N. S., Jian Chen, J. Zhou, J. Chen, Appl. Phys. Lett. 2002, 80, 38293831 Google Scholar
18. Li, Y. B., Xie, S. S., Zhou, W. Y., Ci, L. J., Bando, Y., Chem. Phys. Lett. 2002, 356, 325330.Google Scholar
19. Seeger, T., Kohler-Redlich, P., Rühle, M., Adv. Mater. 2000, 12, 279282.Google Scholar
20. Wang, Z. L., Dai, Z., Bai, Z., Gao, R., Gole, J., Appl. Phys. Letts. 2000, 77, 33493351.Google Scholar