Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T23:33:47.414Z Has data issue: false hasContentIssue false

Silicide Formation in Ti-Si and Co-Si REACTIONS

Published online by Cambridge University Press:  21 February 2011

L.L. Clevengert
Affiliation:
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598
Q.Q. Hong
Affiliation:
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598
R. Mann
Affiliation:
IBM Technology Products, Essex Junction, VT 05452
J.M.E. Harpert
Affiliation:
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598
K. Barmake
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015
C. Cabral Jr.
Affiliation:
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598
C. Nobili
Affiliation:
Universita Degli Studi Di Modena, Modena, Italy
G. Ottaviani
Affiliation:
Universita Degli Studi Di Modena, Modena, Italy
Get access

Abstract

Titanium silicide and cobalt silicide crystallization and formation reactions are important for the processing of CMOS circuits. We demonstrate that kinetic analysis of these reactions under both high heating rates and isothermal heating conditions allows for the determination of transformation mechanisms. For Ti/Si reactions, we show that the C49 to C54-TiSi2 transformation can not be bypassed using heating rates up to 3000°C/min. For the crystallization of CoSi2 from amorphous Co-Si thin films without ion irradiation, the crystallization kinetics are characterized by three dimensional growth from quickly consumed nucleation sites. With high dose silicon ion implantation of the as-deposited films, the crystallization mechanism changes to homogeneous nucleation and two dimensional growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lippens, P., Maex, K., Hove, L. Van den, Keersmaecker, R. De, Probst, V., Koppenol, W., and Weg, W. Van der, J. de Phys., 49, C4191 (1988)Google Scholar
2. Maex, K., Ghosh, G., Delay, L., Probst, V., Lippens, P., Hove, L. Van den and Keersmaecker, R.F. De, J. Mater. Res., 4, 1209 (1989)CrossRefGoogle Scholar
3. Mann, R.W., Clevenger, L.A. and Hong, Q.Z., J. Appl. Phys., 73, 3566 (1993)CrossRefGoogle Scholar
4. Lasky, J.B., Nakos, J.S., Cain, O.J., and Geiss, P.J., IEEE Trans. Electron Devices, 38, 262 (1991)CrossRefGoogle Scholar
5. Beyers, R. and Sinclair, R., J. Appl. Phys., 57, 5240 (1985)CrossRefGoogle Scholar
6. d'Heurle, F.M., Gas, P., Engström, I., Nygren, S., Östling, M. and Petersson, C.S., IBM Research Report RC 11151, No. 50067 (1985)Google Scholar
7. Probst, V., Schaber, H., Mitwalsky, A., Kabza, H., Hove, L. Von den and Maex, K., J. Appl. Phys., 70, 708, (1991)CrossRefGoogle Scholar
8. Liu, R., Williams, D.S. and Lynch, W.T., IEDM Tech. Dig., 1986, 58 (1986)Google Scholar
9. Clevenger, L.A., Harper, J.M.E., Cabral, C. Jr., Nobili, C., Ottaviani, G., and Mann, R., J. Appl. Phys., 72, 4978 (1992)CrossRefGoogle Scholar
10. Hung, L.S., Gyulai, J. and Mayer, J.W., J. Appl. Phys., 54, 5076 (1983)CrossRefGoogle Scholar
11. Pico, C.A. and Lagally, M.G., J. Appl. Phys., 64, 4957 (1988)CrossRefGoogle Scholar
12. deAvillez, R.R., Clevenger, L.A. and Thompson, C.V., J. Mater. Res., 5, 593 (1990)CrossRefGoogle Scholar
13. Thompson, R.D., Takai, H., Psaras, P.A., and Tu, K.N., J. Appl. Phys., 61, 540 (1987)CrossRefGoogle Scholar
14. Li, X.-H., Carlsson, J.R.A., Gong, S.F. and Hentzell, H.T.G., J. Appl. Phys., 72, 514 (1992)CrossRefGoogle Scholar
15. Hong, Q.Z., Barmak, K. and Clevenger, L.A., J. Appl. Phys., 72 3423 (1992)CrossRefGoogle Scholar
16. Ridgway, M.C., Elliman, R.G., Thornton, R.D. and Williams, J.S., Appl. Phys. Lett., 56, 1992 (1990)CrossRefGoogle Scholar
17. Smith, D.A., Tu, K.N. and Weiss, B.Z., Ultramicroscopy, 30, 90 (1989)CrossRefGoogle Scholar
18. Nava, F., Weiss, B.Z., Ahn, K.Y., Smith, D.A. and Tu, K.N., J. Appl. Phys., 64, 354 (1988)CrossRefGoogle Scholar
19. Hong, Q.Z., Barmak, K., Hong, S.Q., and Clevenger, L.A., to be published in J. Appl. Phys.Google Scholar
20. Nobili, C., Bosi, M., Ottaviani, G., Queirolo, G., and Bacci, L., Appl. Surf. Sci., 53, 219 (1991)CrossRefGoogle Scholar
21. Kissinger, H.E., Anal. Chem., 29 1702 (1957)CrossRefGoogle Scholar
22. Avrami, M., J. Chem. Phys., 9, 177 (1941)CrossRefGoogle Scholar
23. Thompson, C.V., Greer, A.L. and Spaepen, F., 31, 1883 (1983)CrossRefGoogle Scholar
24. Kelton, K.F., A.L. Greer and Thompson, C.V., 79, 6261 (1983)CrossRefGoogle Scholar
25. Mann, R., Racine, C.A. and Bass, R.S, Mater. Res. Soc. Symp. Proc., 224, 115 (1991)CrossRefGoogle Scholar
26. Frost, H.J. and Thompson, C.V, SPIE, 821, 77 (1987)Google Scholar
27. Christian, J.W., The theory of Transformations in Metals and Alloys, 2nd ed., (Pergamon, Oxford, 1975) chapter 10Google Scholar
28. deAvillez, R.R., Clevenger, L.A. and Thompson, C.V., J. Mater. Res., 4, 1057 (1989)CrossRefGoogle Scholar