Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:40:26.962Z Has data issue: false hasContentIssue false

SiGe Thin-Film Structures for Solar Cells

Published online by Cambridge University Press:  10 February 2011

G. Bremond
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), Bât. 502, Institut National des Sciences Appliquées de Lyon, 20 Av. Albert Einstein, Villeurbanne 69621 Cedex, FRANCE
A. Daami
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), Bât. 502, Institut National des Sciences Appliquées de Lyon, 20 Av. Albert Einstein, Villeurbanne 69621 Cedex, FRANCE
A. Laugier
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), Bât. 502, Institut National des Sciences Appliquées de Lyon, 20 Av. Albert Einstein, Villeurbanne 69621 Cedex, FRANCE
W. Seifert
Affiliation:
Institute for Semiconductor Physics, D-15230 Frankfurt (Oder), GERMANY
M. Kittler
Affiliation:
Institute for Semiconductor Physics, D-15230 Frankfurt (Oder), GERMANY
J. Poortmans
Affiliation:
Interuniversitair Micro-Electronika Centrum (IMEC) vzw, Kapeldreef 75, 3001 Leuven, BELGIUM
M. Caymax
Affiliation:
Interuniversitair Micro-Electronika Centrum (IMEC) vzw, Kapeldreef 75, 3001 Leuven, BELGIUM
K. Said
Affiliation:
Interuniversitair Micro-Electronika Centrum (IMEC) vzw, Kapeldreef 75, 3001 Leuven, BELGIUM
M. Konuma
Affiliation:
Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, GERMANY
A. Gutjahr
Affiliation:
Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, GERMANY
I. Silier
Affiliation:
Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, GERMANY
Get access

Abstract

In order to study their applicability as the active base material in Si thin crystalline film solar cell technology, SiGe relaxed layers grown by Liquid Phase Epitaxy (LPE) and Chemical Vapor Deposition (CVD) on Si substrates are investigated by optical and electrical measurements (TEM, EXD, PL, EBIC). The main results of this work is to point out the improvement of the SiGe active base layer by using smooth Ge graded SiGe buffer layer and remote plasma hydrogenation. TEM, EXD, PL experiments show the effect of the Ge graded buffer layer grown using LPE, by confining the threading dislocations in the SiGe buffer layer close to the Si/SiGe interface. EBIC measurements reveal low recombination activity of dislocations at 300 K providing the diffusion length exceeds the 15 μm layer thickness The enhanced luminescence of SiGe near bandgap indicates that remote plasma hydrogenation induces a decrease of the non-radiative recombination pathways due to dislocations on CVD layers where defect recombinations dominate as indicated by EBIC measurements.

This study points out the importance of controlling relaxed SiGe layers with good minority carrier recombination quality as a key issue for the optimization of new SiGe/Si based solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for instance related papers in the proceedings of the European Photovoltaic Solar Energy Conference and Exhibition in Barcelona, July 1997 Google Scholar
2. Powell, A. R., Iyer, S. S. and Legoues, F. K., Appl. Phys. Lett. 64, 1856, (1994).Google Scholar
3. Linder, K. K., Zhang, F. C., Rieh, J. -S. and Bhattacharya, P., Appl. Phys. Lett. 70, 3224, (1997).Google Scholar
4. Bremond, G., Souifi, A., Dutartre, D. and Benyattou, T., Thin Solid Films, 222,.60, (1992).Google Scholar
5. Watson, G. P., Fitzgrald, E. A., Xie, Y.-H. and Monroe, D., J. Appl. Phys. 75, 263, (1994).Google Scholar
6. Chen, W. M., Buyanova, I. A., Ni, W. -X., Hansson, G. V. and Monemar, B., Appl. Phys. Lett. 70, 369, (1997).Google Scholar
7. Sekiguchi, T., Kveder, V. V. and Sumino, K., J. Appl. Phys. 76, 7882, (1994).Google Scholar
8. Arbert-Engels, V., Tijero, J. M. G., Manissadjian, A., Higgs, V. and Wang, K. L., Appl. Phys._Lett. 61, 2586, (1992).Google Scholar
9. Elgamel, H. E., Caymax, M., Ghannam, M., Poortmans, J., De Schepper, P., Nijs, J. and Mertens, R., Proc. of the 12th European Photovoltaic Solar Energy Conference, Amsterdam, 724 (1994)Google Scholar
10. Spiegel, M.,Fath, P., Peter, K.,Buck, B., Willeke, G. and Bucher, E., Proc. of the 13th European Photovoltaic Solar Energy Conference, Nice, 421 (1995)Google Scholar
11. Beaucarne, G., Said, K., Vermeulen, T., Duerinckx, F., Poortmans, J. and Nijs, J., Proc. of the 14th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, (1997).Google Scholar
12. Lüdemann, R., Bilyalov, R. R. and Schetter, C., Proc. of 14th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, 1997.Google Scholar
13. Weber, J. and Alonso, M. I., Phys. Rev. B, Vol.40, No. 8, 5683, (1989).Google Scholar
14. Kittler, M., Ulhaq-Bouillet, C. and Higgs, V., J. Appl. Phys. 78, 4573, (1995)Google Scholar
15. Weber, J. and Alonso, M. I., Defect Control in Semiconductors, pp.14531457, (1990).Google Scholar