No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Silicon germanium (SiGe) is considered to substitute silicon (Si) as channel material of p-type MOSFET in future CMOS generations due to its higher hole mobility. In this work we investigate SiGe channels with a germanium concentration of 23 at% and 30 at%, even though the mobility is expected to be higher with even more germanium in the alloy. Low pressure chemical vapor deposition was used for SiGe deposition. A state of the art CMOS process including high-k dielectric and metal gate electrode was applied for fabrication of sub 50 nm gate length devices. As expected from the SiGe channel conduction and valence band offset the threshold voltage of the devices is influenced. The gate stack was directly deposited onto the SiGe layer consisting of a chemically grown base oxide, hafnium-based dielectric and titanium nitride gate electrode. C-V and I-V measurements show comparable CET and leakage values for the high-k metal gate stack on Si and SiGe channels. The trap density at the channel dielectric interface was determined using the charge pumping technique. The device characteristics of n- and p-MOSFETs with SiGe channels are compared to conventional Si channel devices. Short channel mobility was extracted with the gM,LIN-Method.