Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T02:31:50.079Z Has data issue: false hasContentIssue false

Sic Thin Film Characterization and Stress Measurements for High Temperature Sensors Applications

Published online by Cambridge University Press:  10 February 2011

C. Gourbeyre
Affiliation:
: Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
P. Aboughe-nze
Affiliation:
: Lab. Multimatériaux et Interfaces, UMR CNRS 5615, U.C.B. L., Bat. 731, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
C. Malhaire
Affiliation:
: Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
M. Le Berre
Affiliation:
: Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
Y. Monteil
Affiliation:
: Lab. Multimatériaux et Interfaces, UMR CNRS 5615, U.C.B. L., Bat. 731, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
D. Barbieri
Affiliation:
: Lab. Physique de la Matière, UMR CNRS 5511, INSA de Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
Get access

Abstract

In this work related to high temperature pressure sensors, a study was undertaken on the characterisation of β-SiC thin films through X-Ray Diffraction, AFM and stress measurements. 3C-SiC films were grown on (100) Si substrate in a vertical reactor by atmospheric-pressure chemical vapour deposition (APCVD). Silane and propane were used as precursor gas and hydrogen as carrier gas. Prior to the growth, Si surfaces were annealed at 1000°C for 5 minutes and carbonized with C3H8 at 1150°C during 10 minutes. At 1350°C, SiH4, C3H8 and H2 were introduced for the SiC deposition. The atomic ratio of Si/C in the gas phase was 0.3 and the growth rate was 3 μm/h. Only the process time was varying to obtain different SiC layer thicknesses varying from 3 to 9 μm as measured by FT-IR spectrometry. Stress measurements of thin β-SiC layers deposited on thick Si substrates were performed at room temperature using the bending plate method and the Stoney's equation. The stress for a 3 μm thick SiC layer is evaluated to be in the range of 400 MPa in tension. When increasing the SiC film thickness, this stress decreases due to the relaxation of the structure with bending. SiC/Si membranes were obtained by KOH etching and studied as a function of pressure in the [0-50 mbar] range. A residual stress in the membrane was deduced from the load-deflection measurement technique reaching 105 MPa in tension.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Berg, J. von., Ziermann, R., Reichert, W., Obermeier, E., Eickhoff, M., Krötz, G., Thoma, U., Boltshauser, T., Cavalloni, C., Nendza, J.P., Mater. Sci. Forum Vols. 264–268, p.10011004 (1998)Google Scholar
[2] Shor, J., Golsdtein, D., Kurtz, A. D., IEEE Trans. Electron. Dev., Vol 40, p. 10931099 (1993)Google Scholar
[3] Kordina, O., Bjôketun, L.-O., Henry, A., Hallin, C., Glass, R. C., Hultman, L., Sundgren, J. E., Janzèn, E., J. Crystal Growth 154, p 303 (1995)Google Scholar
[4] Veprek, S., Kunstmann, Th., Volm, D., Meyer, B. K., J. Vac. Sci. Technol. A15 p.10 (1997)Google Scholar
[5] Ferro, G., Vincent, H., Monteil, Y., Chaussende, D. and Bouix, J., Mater. Sci. Forum, Vols. 264–268, p 227230 (1998)Google Scholar
[6] Lee, D. H., Joannopoulos, J. D., Phys. Rev. Lett., 48 (26), p 18421849 (1982)Google Scholar
[7] Li, Z., Bradt, R. C., J. Mat. Sci., 21 p 43664368 (1986)Google Scholar
[8] Malhaire, C., Guyot, Y., le Berre, M., Champagnon, B., Sibaï, A., Barbier, D., Mater. Res. Soc. Symp. 44, p. 179184, (1997)Google Scholar
[9] Malhaire, C., Thèse de Doctorat, INSA Lyon, 1998, 202p.Google Scholar
[10] Berg, J. von et al., HiTEC, June 9–14, 1996, Albuquerque, NM, USA, p.5157 Google Scholar
[11] Guyot, Y., Malhaire, C., Berre, M. Le, Champagnon, B., Sibaï, A., Bustarret, E., Barbier, D., Mat. Sci. And Eng., B46, p.2428 (1997)Google Scholar
[12] Maier-Schneider, D., Maibach, J., Obermeier, E., J. of Microelectromechanical Syst., 4, p. 238241 (1995).Google Scholar
[13] Su, C. M., Fekade, A., Spencer, M., Wuttig, M., J. Appl. Phys., 77, p. 12801283 (1995)Google Scholar
[14] Tong, L., Mehregany, M., Matus, L. G., Appl. Phys. Lett., 60, p. 29922994 (1992)Google Scholar