Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:29:07.568Z Has data issue: false hasContentIssue false

Si Ultra Shallow Junctions Dopant Profiling with ADF-STEM

Published online by Cambridge University Press:  01 February 2011

Andrea Parisini
Affiliation:
[email protected], CNR-IMM, Sezione di Bologna, via P. Gobetti 101, Bologna, I-40129, Italy, +39 051 6399154, +39 051 6399216
D. Giubertoni
Affiliation:
[email protected], Fondazione Bruno Kessler-irst, via Sommarive 14, Povo (Tn), I-38050, Italy
M. Bersani
Affiliation:
[email protected], Fondazione Bruno Kessler-irst, via Sommarive 14, Povo (Tn), I-38050, Italy
V. Morandi
Affiliation:
[email protected], CNR-IMM, Sezione di Bologna, via P. Gobetti 101, Bologna, I-40129, Italy
P. G. Merli
Affiliation:
[email protected], CNR-IMM, Sezione di Bologna, via P. Gobetti 101, Bologna, I-40129, Italy
J. A. van den Berg
Affiliation:
[email protected], Institute of Materials Research, University of Salford, Joule Physics Laboratory, Salford, M5 4WT, United Kingdom
Get access

Abstract

In this work, we show how the Z-contrast annular dark field scanning transmission electron microscopy technique can provide reliable dopant profiles in ultra shallow junctions in Si. Dopant profiles obtained with this technique are compared with those obtained by spectroscopic techniques like secondary ion mass spectroscopy and medium energy ion scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ferri, M., Solmi, S., Parisini, A., Bersani, M., Giubertoni, D. and Barozzi, M., J. Appl. Phys., 99, 113508–1 (2006) and references therein.10.1063/1.2200587Google Scholar
2. Giubertoni, D. et al. , Appl. Surf. Sci. 252, 7214 (2006).10.1016/j.apsusc.2006.02.137Google Scholar
3. Berg, J. A. van den et al. , J Vac. Sci. Technol. B 20, 974 (2002).10.1116/1.1477420Google Scholar
4. Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. and Gossmann, H.-J. L., Nature 416, (2002).10.1038/416826aGoogle Scholar
5. Merli, P. G., Morandi, V., and Corticelli, F., Appl. Phys. Lett. 81, 4535 (2002).10.1063/1.1528734Google Scholar
6. Pennycook, S. J., Berger, S. D., and Culbertson, R. J., J. Microsc., 144, 229 (1986).10.1111/j.1365-2818.1986.tb02804.xGoogle Scholar
7. Parisini, A., Giubertoni, D., Bersani, M., Ferri, M., Morandi, V. and Merli, P. G., Proceedings of the 8th Multinational Congress on Microscopy, Prague, 18-21 june 2007, p. 43.Google Scholar
8. Howie, A., J. Microsc., 117, 11 (1979).10.1111/j.1365-2818.1979.tb00228.xGoogle Scholar
9. Elliott, S.L., Broom, R.F., and Humphreys, C.J., J. Appl. Phys., 91, 9116 (2002).10.1063/1.1476968Google Scholar
10. Kataoka, Y. and Itani, T., Surf. Interface Anal. 39, 826 (2007).10.1002/sia.2597Google Scholar