Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:49:59.972Z Has data issue: false hasContentIssue false

Shubnikov-De Haas Studies of Negative Persistent Photoconductivity in AlGaSb/InAs/AlGaSb Quantum Wells

Published online by Cambridge University Press:  26 February 2011

Ikai Lo
Affiliation:
WL/MLPO, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433–6533
W. C. Mitchel
Affiliation:
WL/MLPO, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433–6533
M. O. Manasreh
Affiliation:
WL/ELRA, Wrigh Laboratory, Wright-Patterson Air Force Base, OH 45433–6543
C. E. Stutz
Affiliation:
WL/ELRA, Wrigh Laboratory, Wright-Patterson Air Force Base, OH 45433–6543
K. R. Evans
Affiliation:
WL/ELRA, Wrigh Laboratory, Wright-Patterson Air Force Base, OH 45433–6543
Get access

Abstract

We have measured the Shubnikov-de Haas (SdH) effect in the MBE grown Al0.6Ga0.4Sb/InAs/Al0.6Ga0.4Sh single quantum well (QW) for the magnetic fields up to 4.5T and the temperatures from 1.1 K to 4.2K. The carrier concentration of the two dimensional electron gas (2DEG) was varied via the negative persistent photoconductivity (NPPC) effect. By illuminating the sample with a red light-emitting diode (LED) at the low temperature, the carrier concentration of the 2DEG in the InAs well was reduced from 5.8×1011 cm−2 to 3.6×1011 cm−2 and the corresponding quantum lifetime increased from 0.16ps to 0.21ps. The effective mass was determined by the temperature dependence of SdH oscillations and equal to (0.0317 ± 0.0005)m0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schubert, E. F., and Ploog, K., Phys. Rev. B30, 7021 (1984).CrossRefGoogle Scholar
[2] Caswell, N. S., Mooney, P. M., Wright, S. L. and Solomon, P. M., Appl. Phys. Lett. 48 (16), 1093 (1986).CrossRefGoogle Scholar
[3] Lo, Ikai, Mitchel, W. C., Perrin, R. E., Messham, R. L. and Yen, M. Y., Phys. Rev. B43, 11787 (1991).Google Scholar
[4] Lang, D. L. and Logan, R. A., Phys. Rev. B19, 1015 (1979);CrossRefGoogle Scholar
for review see Mooney, P. M., J. Appl. Phvs. 67 (3), Rl (1990).CrossRefGoogle Scholar
[5] Tuttle, G., Kroemer, H. and English, J. H., J. Appl. Phys. 65 (12) 5239 (1989).Google Scholar
[6] Hopkins, P. F., Rimberg, A. J., Westervelt, R. M., Tuttle, G. and Kroemer, H., Appl. Phys. Lett. 58 (13) 1428 (1991).Google Scholar
[7] Lo, Ikai, Mitchel, W. C., Manasreh, M. O., Stutz, C. E. and Evans, K. R. (unpublished).Google Scholar
[8] Lo, Ikai, Mitchel, W. C., Manasreh, M. O., Stutz, C. E. and Evans, K. R., Proceeding of the conference of the fifteenth state-of-the-art program on compound semiconductor, The 180th Electrochemical Society 1991 Fall Meeting, Phoenix, Arizona (The Electrochemical Society, NJ).Google Scholar
[9] Fang, F. F., Smith, T. P. III and Wright, S. L., Surface Science 196, p.310315 (1988).Google Scholar
[10] Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M. and Matsusue, T., Appl. Phys. Lett. 51 (23), 1934 (1987);Google Scholar
Noda, T. and Sakaki, H. (private communication).Google Scholar