Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:01:52.525Z Has data issue: false hasContentIssue false

Short-Period Strain-balanced GaAs1-x Nx/InAs(N) Superlattices Lattice-matched to InP(001): a new material for 0.4–0.6 eV mid IR applications

Published online by Cambridge University Press:  26 February 2011

L. Bhusal
Affiliation:
Photovoltaics and Nanostructures group, Texas Center for Superconductivity and Advanced Materials, University of Houston, 4800 Calhoun, TX-77204, USA Physics Department, University of Houston, 4800 Calhoun, TX-77204, USA
A. Alemu
Affiliation:
Photovoltaics and Nanostructures group, Texas Center for Superconductivity and Advanced Materials, University of Houston, 4800 Calhoun, TX-77204, USA
A. Freundlich
Affiliation:
Photovoltaics and Nanostructures group, Texas Center for Superconductivity and Advanced Materials, University of Houston, 4800 Calhoun, TX-77204, USA Physics Department, University of Houston, 4800 Calhoun, TX-77204, USA
Get access

Abstract

A theoretical and experimental investigation of electronic band structure (Γ-point) of strain balanced GaAs1-xNx/InAs1-xNx short period superlattice on InP is performed. A six-band Kane Hamiltonian and band anti-crossing models, modified for the strain effects are used to describe the electronic states of the highly strained zincblende GaAs1-xNx and InAs1-xNx ternaries. Operating wavelengths of these heterostructures are predicted to extend beyond 2 μm. Preliminary photoluminescence results of the chemical beam epitaxially grown sample are shown to be consistent with the theoretical predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kondow, M. et.al., Jpn. J. Appl. Phys. 35, 1273 (1996).Google Scholar
1. Kurtz, Steven R. et.al., Appl. Phys. Lett. 74, 729 (1999).Google Scholar
2. Wagner, A. et.al., Appl. Phys. Lett. 76, 271 (2000).Google Scholar
3. Pavelescu, E-M. et.al., Appl. Phys. Lett. 80, 3054 (2002).Google Scholar
4. Li, W. et.al., Appl. Phys. Lett. 79, 3386 (2001).Google Scholar
5. Chelikowsky, J. R. and Cohen, M. L., Phys.Rev. B 10, 5095 (1974).Google Scholar
6. Freundlich, A., Final report, “State of Texas Advanced Research Grant”, 03652–0099–1999, September. (2002).Google Scholar
7. Bhusal, L., Alemu, A. and Freundlich, A., Nanotechnology, 15, S245, (2004)Google Scholar
8. Freundlich, A., Bhusal, L., Alemu, A., Phys. Stat. Solidi. C, in pressGoogle Scholar
9. Pinault, M-A. and Freundlich, A., private communicationGoogle Scholar
10. Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, Sarah R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
11. Bir, G.L. and Pikus, G.E., in “Symmetry and Strain-Induced Effects in Semiconductors”, New York, Wiley (1974).Google Scholar
12. Vurgaftman, I and Mayer, J.R., J. Appl. Phys., 94, 3675, (2003).Google Scholar
13. Vurgaftman, I., Meyer, J.R. and Ram-Mohan, L.R., Appl. Phys. Rev. 89, 5815 (2001).Google Scholar
14. Adachi, S., J. Appl. Phys. 53, 8775 (1982).Google Scholar
15. Shih, D.K, Lin, H.H., Sung, L.W., Chu, T.Y. and Yang, T. R. Jpn J. Phys., 42, 375, (2003)Google Scholar
16. Wei, S.H and Zunger, A., Appl. Phys. Lett. 72, 2011 (1998).Google Scholar
17. Bastard, G., “Wave Mechanics Applied to Semiconductor Heterostructures”, Halstead, New York, (1988).Google Scholar