Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:45:36.025Z Has data issue: false hasContentIssue false

Shock-Wave Synthesis of Nanoparticles During Ion Sputtering

Published online by Cambridge University Press:  17 March 2011

L. E. Rehn
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439, U.S.A.
R. C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439, U.S.A.
S. E. Donnelly
Affiliation:
Joule Physics Laboratory, University of Salford, Salford M5 4WT, U.K.
P. M. Baldo
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439, U.S.A.
L. Funk
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439, U.S.A.
Get access

Abstract

We report electron microscopy studies of nanoparticles ( 500 ≤ n ≤ 104, where n is the number of atoms in a given cluster) that are sputtered from the surface by high-energy ion impacts. Measurements of the sizes of these clusters yielded an inverse power-law distribution with an exponent of –2 that is independent of irradiating ion species and total sputtering yield. This inverse-square dependence indicates that these nanoclusters are produced when shock waves, generated by sub-surface displacement cascades, impact and ablate the surface. Such nanoparticles consist of simple fragments of the original surface, i.e., ones that have not undergone any large thermal excursion. As discussed below, this “ion ablation” technique should therefore be useful for synthesizing nanoparticles of a wide variety of alloy compositions and phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Honig, R. E., J. Appl. Phys. 29, 549 (1958).Google Scholar
[2] Hofer, W. O. in Sputtering by Particle Bombardment III, edited by Behrisch, R. and Wittmaack, K., (Springer, Berlin, 1991) 15.Google Scholar
[3] Staudt, C., Heinrich, R. and Wucher, A, Nucl. Instrum. and Meth. B 164–165, 677 (2000).Google Scholar
[4] Coon, S. R., Calaway, W. F., Burnett, J. W., Pellin, M. J., Gruen, D. M., Spiegel, D. R. and White, J. M., Surf. Sci. 259, 275 (1991).Google Scholar
[5] Wucher, A., Wahl, M., Oechsner, H., Nucl. Instrum. and Meth. B 82, 337 (1993).Google Scholar
[6] Rehn, L. E., Birtcher, R. C., Donnelly, S. E., Baldo, P. M., and Funk, L., Phys. Rev. Lett. 87.(2001).Google Scholar
[7] Bitensky, I. S. and Parilis, E. S., Nucl. Instrum. and Meth. B 21, 26 (1987).Google Scholar
[8] Allen, C. W., Funk, L. L., Ryan, E. A. and Ockers, S. T., Nucl. Instrum. and Meth. B 40/41, 553 (1989).Google Scholar
[9] Birtcher, R. C., Donnelly, S. E. and Schlutig, S., Phys. Rev. Lett. 85, 4968 (2000).Google Scholar