Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:16:29.249Z Has data issue: false hasContentIssue false

Shape Control and Emission-wavelength Extension of InP-based InAsSb Nanostructures

Published online by Cambridge University Press:  31 January 2011

Wen Lei
Affiliation:
[email protected], Dept of Electronic Materials Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
H. H. Tan
Affiliation:
[email protected], Dept of Electronic Materials Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
C. Jagadish
Affiliation:
[email protected], Dept of Electronic Materials Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
Get access

Abstract

This paper presents a study on the shape control and emission wavelength extension of InP-based InAsSb nanostructures. InGaAs buffer, combined with low growth temperature and medium V/III ratio, provides an effective approach to fabricate InAsSb QDs. By using InGaAsSb sandwich layer to serve as both strain reducing layer and metamorphic buffer layer, the emission wavelength of InAsSb QDs can be extended well beyond 2um, which is very useful for their application as mid-infrared emitters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cornet, C., Doré, F., Ballestar, A., Even, J., Bertru, N., Corre, A. Le, and Loualiche, S., J. Appl. Phys., 98, 126105 (2005).Google Scholar
2 Qiu, Y., and Uhl, D., Appl. Phys. Lett., 84, 1510 (2004).Google Scholar
3 Doré, F., Cornet, C., Caroff, P., Ballestar, A., Even, J., Bertru, N., Dehaese, O., Alghoraibi, I., Folliot, H., Piron, R., Corre, A. Le, and Loualiche, S., phys. stat. sol. (c), 3, 3920 (2006).Google Scholar
4 Lei, W., Tan, H. H., and Jagadish, C., Appl. Phys. Lett., 95, 013108 (2009).Google Scholar
5 Kawaguchi, K., Ekawa, M., Akiyama, T., Kuwatsuka, H., and Sugawara, M., J. Cryst. Growth, 291, 154 (2006).Google Scholar
6 Kawaguchi, K., Ekawa, M., Akiyama, T., Kuwatsuka, H., and Sugawara, M., J. Cryst. Growth, 298, 558 (2007).Google Scholar
7 Lei, W., Tan, H. H. and Jagadish, C., Appl. Phys. Lett., 95, 143124 (2009).Google Scholar
8 Lei, W., Wang, Y. L., Chen, Y. H., Jin, P., Ye, X. L., Xu, B., and Wang, Z. G., Appl. Phys. Lett., 90, 103118 (2007).Google Scholar
9 Priester, C. and Grenet, G., Phys. Rev. B, 61, 16029 (2000).Google Scholar
10 Krzyzewski, T. J. and Jones, T. S., Phys. Rev. B, 78, 155307 (2008).Google Scholar
11 Bierwagen, O. and Masselink, W. T., Appl. Phys. Lett., 86, 113110 (2005).Google Scholar
12 Ulloa, J. M., Anantathanasarn, S., Veldhoven, P. J. van, Koenraad, P. M., and Nötzel, R., Appl. Phys. Lett., 92, 083103 (2008).Google Scholar
13 Anantathanasarn, S., Nötzel, R., Veldhoven, P. J. van, Eijkemans, T. J., and Wolter, J. H., J. Appl. Phys., 98, 013503 (2005).Google Scholar
14 Suekane, O., Hasegawa, S., Okui, T., Takata, M., and Nakashima, H., Jpn. J. Appl. Phys., 41, 1022 (2002).Google Scholar
15 Dubrovskii, V.G., Cirlin, G.E., Musikhin, Y.G., Samsonenko, Y.B., Tonkikh, A.A., Polyakov, N.K., Egorov, V.A., Tsatsul'nikov, A.F., Krizhanovskaya, N.A., Ustinov, V.M., Werner, P., J. Cryst. Growth, 267, 47 (2004).Google Scholar
16 Stringfellow, G. B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, Academic Press, San Diego, 1999.Google Scholar
17 Tatebayashi, J., Nishioka, M., and Arakawa, Y., Appl. Phys. Lett., 78, 3469 (2001).Google Scholar
18 Mi, Z., Bhattacharya, P., and Yang, J., Appl. Phys. Lett., 89, 153109 (2006).Google Scholar
19 Liu, H.Y., Qiu, Y., Jin, C.Y., Walther, T., and Cullis, A.G., Appl. Phys. Lett., 92, 111906 (2008).Google Scholar
20 Liu, H.Y., Steer, M.J., Badcock, T.J., Mowbray, D.J., Skolnick, M.S., Suarez, F., Ng, J.S., Hopkinson, M., David, J.P.R., J. Appl. Phys., 99, 046104 (2006).Google Scholar
21 Balakrishnan, G., Huang, S., Rotter, T.J., Stintz, A., Dawson, L. R., Malloy, K. J., Xu, H., and Huffaker, D. L., Appl. Phys. Lett., 84, 2058 (2004).Google Scholar
22 Lei, W., Tan, H. H. and Jagadish, C., “Extending the emission wavelength of InAsSb/InP nanostructures using InGaAsSb sandwich layers”, submitted to Appl. Phys. Lett..Google Scholar