Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:16:59.565Z Has data issue: false hasContentIssue false

Shape and stability of silver nanoparticles and their dependence on the conditions of preparation.

Published online by Cambridge University Press:  31 January 2012

M.I. Hernández-Castillo
Affiliation:
CIBA-Tlaxcala, Instituto Politécnico Nacional, Tepetitla, Tlax., 90700, México.
O. Zaca-Moran
Affiliation:
CIBA-Tlaxcala, Instituto Politécnico Nacional, Tepetitla, Tlax., 90700, México.
P. Zaca-Moran
Affiliation:
Fisicoquímica de Materiales, ICUAP-BUAP, 72050, México. E-mail: [email protected]
M. Rojas-López
Affiliation:
CIBA-Tlaxcala, Instituto Politécnico Nacional, Tepetitla, Tlax., 90700, México.
V.L. Gayou
Affiliation:
CIBA-Tlaxcala, Instituto Politécnico Nacional, Tepetitla, Tlax., 90700, México.
R. Delgado-Macuil
Affiliation:
CIBA-Tlaxcala, Instituto Politécnico Nacional, Tepetitla, Tlax., 90700, México.
A. Orduña-Díaz
Affiliation:
CIBA-Tlaxcala, Instituto Politécnico Nacional, Tepetitla, Tlax., 90700, México.
Get access

Abstract

By using the citrate reduction procedure we have synthesized Ag nanoparticles, applying several conditions of preparation, being after characterized by UV-visible spectrophotometry. Following a logical sequence, the starting experiment was realized varying the reaction time, after that it was varied the concentration of the reductor agent, and finally it was varied the volume of the reductor agent. According to this methodology, TEM measurements show that firstly we have nanostructures with different shape and size, whereas in the last part of the experiment we have Ag nanoparticles with homogeneous shape and size.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lam, D. M.-K., Rossiter, B. W., Sci. Am. 1991, 265, 80.Google Scholar
2. Lewis, L. N., Chem. Rev. 1993, 93, 2693.Google Scholar
3. Nicewarner-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Walton, I. D., Cromer, R., Keating, C. D., Natan, M., Science 2001, 294, 137.Google Scholar
4. Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., Atwater, H. A., Adv. Mater. 2001, 13, 1501.Google Scholar
5. Kamat, P. V., J. Phys. Chem. B 2002, 106, 7729.Google Scholar
6. Murray, C. B., Sun, S., Doyle, H., Betley, T., Mater. Res. Soc. Bull. 2001, 26, 985.Google Scholar
7. Li, W., Guo, Y., Zhang, P., J. Phys. Chem. C 2010, 114, 64136417.Google Scholar
8. Skirtach, A., Javier, A., Kreft, O., Ko¨hler, K., Alberola, A., Mo¨hwald, H., Parak, W., Sukhorukov, G., Angew. Chem. Int. Ed. 2006, 45, 4612.Google Scholar
9. Link, S. El Sayed, M.A. J. Phys. Chem. B 1999, 103, 8410.Google Scholar
10. Taleb, A., Petit, C., Pileni, M.. J. Phys. Chem. B 1998, 102, 2214.Google Scholar
11. Sun, Y., Gates, B., Mayers, B., Xia, Y.. Nano Lett. 2002, 2, 165.Google Scholar
12. Haynes, C.L., Van Duyne, R.P.. J. Phys. Chem. B 2001, 105, 5599.Google Scholar
13. Lee, P. C., Meisel, D.. J. Phys. Chem. 1982, 86, 3391.Google Scholar
14. Creighton, J. A., Blatchford, C. G., Albrecht, M. G.. J. Chem. Soc., Faraday Trans. 2 1979, 75, 790.Google Scholar