Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:24:23.846Z Has data issue: false hasContentIssue false

Shallow-donor states in spherical quantum dots with parabolic confinement

Published online by Cambridge University Press:  21 March 2011

C. A. Duque
Affiliation:
Instituto de Física, Universidad de Antioquia, AA 1226, Medellín, Colombia
N. Porras-Montenegro
Affiliation:
Departamento de Física, Universidad del Valle, AA 25360, Cali, Colombia
M. de Dios-Leyva
Affiliation:
Dept. of Theoretical Physics, Univ. of Havana, San Lazaro y L, Vedado, 10400, Havana, Cuba
L. E. Oliveira
Affiliation:
Instituto de Física, Unicamp, CP 6165, Campinas, São Paulo, 13083-970, Brazil
Get access

Abstract

The evidence of a parabolic potential well in quantum wires and dots was reported in the literature, and a parabolic potential is often considered to be a good representation of the “barrier” potential in semiconductor quantum dots. In the present work, the variational and fractionaldimensional space approaches are used in a thorough study of the binding energy of on-center shallow donors in spherical GaAs-Ga1-xAlxAs quantum dots with potential barriers taken either as rectangular [V b (eV) ??1.247 x for r >] or parabolic [Vb (r) ??β2?r2] isotropic barriers. We define the parabolic potential with a β?parameter chosen so that it results in the same E0 groundstate energy as for the spherical quantum dot of radius R and rectangular potential in the absence of the impurity. Calculations using either the variational or fractional-dimensional approaches both for rectangular and parabolic potential result in essentially the same on-center binding energies provided the dot radius is not too small. This indicates that both potentials are alike representations of the quantum-dot barrier potential for a radius R quantum dot provided the parabolic potential is defined with?β?chosen as mentioned above.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xiao, Z., Zhu, J., and He, F., Superlatt. and Microstruct. 19, 138 (1996), and references therein.Google Scholar
2. Porras-Montenegro, N. and Pérez-Merchancano, S. T., Phys. Rev. B46, 9780 (1992).Google Scholar
3. Oliveira, L. E., Duque, C. A., Porras-Montenegro, N., and Dios-Leyva, M. de, Physica B302–303, 72 (2001), and references therein.Google Scholar
4. Kash, K., Gaag, B. P. Van der, Mahoney, D.D., Gozdz, A. S., Florez, L. T., and P.Harbison, J., Phys. Rev. Lett. 67, 1326 (1991).Google Scholar
5. Sopanen, M. et al, Appl. Phys. Lett. 66, 2364 (1995).Google Scholar
6. Xiao, Z., Zhu, J., and He, F., Superlatt. and Microstruct. 19, 137 (1996).Google Scholar
7. Bose, C., J. Appl. Phys. 83, 3089 (1998); C. Bose, Physica E4, 180 (1999).Google Scholar
8. Murillo, G. and Porras-Montenegro, N., Phys. Stat. Sol. (b) 220, 187 (2000).Google Scholar
9. Stillinger, F. H., J. Math. Phys. 18, 1224 (1977); X-F. He, Phys. Rev. B43, 2063 (1991).Google Scholar
10. Mathieu, H., Lefebvre, P., and Christol, P., Phys. Rev. B46, 4092 (1992); H. Mathieu, P. Lefebvre, and P. Christol, J. Appl. Phys. 74, 5626 (1993); P. Lefebvre, P. Christol, H. Mathieu, and S. Glutsch, Phys. Rev. B52, 5756 (1995).Google Scholar