Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:34:46.084Z Has data issue: false hasContentIssue false

Shallow Impurity States in Wurtzite and Zinc Blende Structure GaN

Published online by Cambridge University Press:  10 February 2011

R. Wang
Affiliation:
Dept. of EE, Univ. of Minnesota, Minneapolis, MN 55455, [email protected]
P. P. Ruden
Affiliation:
Dept. of EE, Univ. of Minnesota, Minneapolis, MN 55455, [email protected]
J. Kolnik
Affiliation:
School of ECE, Georgia Tech., Atlanta, GA 30332
I. Oguzman
Affiliation:
School of ECE, Georgia Tech., Atlanta, GA 30332
K. F. Brennan
Affiliation:
School of ECE, Georgia Tech., Atlanta, GA 30332
Get access

Abstract

Calculations of shallow donor states for wurtzite and zincblende structure GaN, and acceptor states for zincblende GaN in an effective mass approximation are presented. Band parameters were taken from experiment or determined from band structure calculations. The effect of wavevector dependent screening is examined, based on dielectric functions calculated from empirical pseudopotential band structures. For donor states, the effects of electron-phonon coupling and free carrier screening in the Thomas-Fermi and Debye approximations are discussed briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys., 78, p.1033, (1995).Google Scholar
2. Neugebauer, J. and Walle, C. v.d., Mat. Res. Soc. Symp. Proc., Vol.395, p.645, (1996).Google Scholar
3. Pantelides, S. T., Rev. Mod. Phys., 50, p.797, (1978).Google Scholar
4. Sak, J., Phys. Rev., B3, p.3356, (1971).Google Scholar
5. Baldereschi, A. and Lipari, N. O., Phys. Rev., B8, p.2697, (1973).Google Scholar
6. Lipari, N. O. and Baldereschi, A., Solid State Comm., 25, p.665, (1978).Google Scholar
7. Wang, R., Ruden, P. P., Kolnik, J., Oguzman, I. H. and Brennan, K. F., J. Phys. Chem. Sol., (in press), 1996.Google Scholar
8. Bernholc, J. and Pantelides, S. T., Phys. Rev., B15, p.4935, (1977).Google Scholar
9. Drechsler, M., Hofmann, D. M., Meyers, B. K., Detchprohm, T., Amano, H., and Akasaki, , Jpn. J. Appl. Phys., 34, p.1178, (1995).Google Scholar
10. Fanciulli, M., Lei, T., and Moustakas, T. D., Phys. Rev., B48, p. 15144, (1993).Google Scholar
11. Meney, A. T. and O’Reilly, E. P., Appl. Phys. Lett., 67, p.3013, (1995).Google Scholar
12. Kim, K., Lambrecht, W., and Segall, B., private communication.Google Scholar
13. Götz, W., Johnson, N. M., Chen, C., Liu, H., Kuo, C., and Imler, W., Appl. Phys. Lett., 68, p.3144, (1996).Google Scholar
14. Fischer, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett., 67, p.1298, (1995).Google Scholar