Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:23:42.646Z Has data issue: false hasContentIssue false

SFM and TOF-SIMS Study of Novel Self-Organization phenomena in mixed LB monolayers

Published online by Cambridge University Press:  11 February 2011

B. Pignataro
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6–95125, Catania, Italy.
L. Sardone
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6–95125, Catania, Italy.
A. Licciardello
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6–95125, Catania, Italy.
G. Marletta
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6–95125, Catania, Italy.
Get access

Abstract

Mixed monolayers of dimyristoylphosphatidylcholine (DMPC) and quercetin palmitate (QP) in a molar ratio of 25/75 have been transferred on mica and oxygen plasma cleaned silicon by the Langmuir-Blodgett (LB) technique at different subphase temperatures. Scanning Force Microscopy (SFM) in height, phase and lateral force modes has been employed to investigate the structural and mechanical features at nanoscopic level of these samples. Although the two molecules show a wide range of miscibility at 37 °C, they give rise to phase separation at 10 °C. This last system provides a new example of nanometric scale self-organization. In particular spiral shaped domains rising from the wrapping-up of nanoscopic fiber-like structures have been observed. The high resolution achieved by the use of the dynamic scanning force microscopy operating in the net attractive regime allow to visualize characteristic nanoscopic rupture points along the supramolecular fibers. High mass resolution Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) spectra showed DMPC- as well as QP-related peaks. The ToF-SIMS spectra from the nanostructured samples (10 °C) have been compared with those from the homogeneous ones (37 °C). The phase separated samples provides interesting secondary ions that highlight the QP supramolecular condensation within the fiber-like structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lehn, J.-M., Supramolecular Chemistry. Concepts and Perspectives, VCH, Weinheim, 1995.Google Scholar
2. Niemeyer, C., Adler, M., Pignataro, B., Chi, L., Fuchs, H. and Blohm, D., Nucleic Acids Research 27, 4553 (1999).Google Scholar
3. Muller, D. J., Schoenenberger, C. A., Schabert, F. and Engel, A., J. Struct. Biol. 119, 149 (1997).Google Scholar
4. Schwartz, D.H., Surf. Sci. Rep. 27, 41 (1997).Google Scholar
5. Pignataro, B., Consalvo, C., Compagnini, G. and Licciardello, A., Chem. Phys. Lett. 299, 430 (1999).Google Scholar
6. Pignataro, B., Sardone, L. and Marletta, G., manuscript in preparation.Google Scholar
7. Anczykowski, B., Cleveland, J. P., Krüger, D., Elings, V. and Fuchs, H., Appl. Phys. A 66, 885 (1998).Google Scholar
8. Bhushan, B.: Handbook of Micro/Nano Tribology (CRC, Boca Raton 1999).Google Scholar
9. Magonov, S. N., Cleveland, J., Elings, V., Denley, D. and Whangbo, M. H., Surf. Sci. 389, 201 (1997).Google Scholar
10. Chi, L. F., Appl. Phys. A 68, 203 (1999).Google Scholar
11. Pignataro, B., Chi, L. F., Gao, S., Anczykowski, B., Niemeyer, C. M., Adler, M., Blohm, D. and Fuchs, H., Appl. Phys. A 74, 447 (2002).Google Scholar
12. Pignataro, B., Sardone, L. and Marletta, G., Mat. Sci. Engineer. C 22, 177 (2003).Google Scholar
13. Carlson, J. M. and Sethna, J. P., Phys. Rev. A. 36, 3359 (1987).Google Scholar