Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:52:00.314Z Has data issue: false hasContentIssue false

Service Limitations for Oxidation Resistant Intermetallic Compounds

Published online by Cambridge University Press:  22 February 2011

J. L. Smialek
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
J. A. Nesbitt
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
W. J. Brindley
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
M. P. Brady
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
J. Doychak
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
R. M. Dickerson
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
D. R. Hull
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135.
Get access

Abstract

Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi2 are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. β-NiAl forms protective α-Al2O3 scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti3Al and TiAl compounds form less protective mixed TiO2 and A12O3 scales. However at realistic use temperatures (600°–800 °C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi2 materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500°C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO2–SiO2 scales in pores and microcracks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowell, C.E., Barrett, C.A., Palmer, R.W., Auping, J.V. and Probst, H.B., Oxid. Met., 36, 81 (1991).Google Scholar
2. Doychak, J., Barrett, C.A. and Smialek, J.L., in Corrosion & Particle Erosion at High Temperatures, edited by Srinivasan, V. and Vedula, K. (TMS, Warrendale, PA, 1989) pp. 487514.Google Scholar
3. Nesbitt, J.A. and Barrett, C.A., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS Warrendale, PA, 1993) pp. 601609.Google Scholar
4. Nesbitt, J.A. and Vinarcik, E.J., in Damage and Oxidation Protection in High Temperature Composites, edited by Haritos, G.K. and Ochoa, O.O. (ASME, New York, NY, 1991), pp. 922.Google Scholar
5. Nesbitt, J.A. and Lowell, C.E., in High Temperature Ordered Intermetallics V, edited by Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M.H., (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993) pp. 107118.Google Scholar
6. Zhang, M.-X., Hsieh, K.S., DeKock, J., and Chang, Y.A., Scripta Met. et Mat. 27, 1361 (1986).Google Scholar
7. Pettit, F.S., Trans. TMS 239, 1296 (1967).Google Scholar
8. Smialek, J.L., Corrosion Science 35, 1199 (1993).Google Scholar
9. Kofstad, P., High Temperature Corrosion, 2nd ed., (Elsevier, New York, 1988), p. 293.Google Scholar
10. Welsch, G. and Kahveci, A.I., in Oxidation of High Temperature Intermetallics, edited by Grobstein, T. and Doychak, J., (TMS Warrendale, PA, 1989), pp. 207218.Google Scholar
11. Smialek, J.L. and Humphrey, D.H., Scripta Met. 26, 1763 (1992).Google Scholar
12. Ogden, H R., Maykuth, D.J., Finlay, W.L., and Jaffee, R.I., J. Metals 1953. 267.Google Scholar
13. Lipsitt, H A., Schechtman, D., and Schafrik, R E., Metall. Trans., 11A, 1369 (1980).Google Scholar
14. Balsone, S.J., in Oxidation of High Temperature Intermetallics, edited by Grobstein, T. and Doychak, J., (TMS, Warrendale, PA., 1989) pp. 219234.Google Scholar
15. Huang, S.C. and Hall, E L., Metall. Trans., 22a, 2619 (1991).Google Scholar
16. Wunderlich, W., Kremser, T., and Frommeyer, G., Z. Metallkde. 81, 802 (1990).Google Scholar
17. Kelly, T.J., Juhas, M.C., and Huang, S.C., Scripta Met. et Mat. 29, 1409 (1993).Google Scholar
18. Rowe, R.G., Konitzer, D.G., Woodfield, A.D., and Chestnutt, J.C., in High Temperature Ordered Intermetallic Alloys V, edited by Johnson, L A., Pope, D P., and Stigler, J O., (Mater. Res. Soc. Proc. 213, Pittsburgh, PA, 1991) pp. 703708.Google Scholar
19. Kumar, K.S. and Brown, S.A., Acta Metall. et Mater. 40, 1923 (1992).Google Scholar
20. Kumar, K.S. and Brown, S.A., Phil. Mag. A65, 91 (1992).Google Scholar
21. Chaze, A.M and Coddet, C., J. Less Common Met. 124, (1986).Google Scholar
22. Brindley, W.J., Smialek, J.L., and Gedwill, M A., in HITEMP Review 1992, NASA CP 10104 (1992), pp. 41.1–41.15.Google Scholar
23. Weidemann, K.E., Sankaran, S.N., Clark, S.N., and Wallace, T.A., in Oxidation of High Temperature Intermetallics, edited by Grobstein, T. and Doychak, J., (TMS Warrendale, PA, 1989), pp. 219234.Google Scholar
24. McKee, D.W., presented at Aeromat 92, Anaheim, CA, 1992 (unpublished).Google Scholar
25. Brindley, W.J. and Smialek, J.L., in HITEMP Review 1993, NASA CP 19117 (1993) pp. 34.1–34.12.Google Scholar
26. Subrahmanyam, J., J. Mat. Sci. 23, 1906 (1988).Google Scholar
27. Mabuchi, H., Asai, T., and Nakayama, Y, Scripta Met. 23, 685 (1989).Google Scholar
28. Smialek, J.L., Gedwill, M.A., and Brindley, P.K., Scripta Met. et Mat. 24, 1291 (1990).Google Scholar
29. Zhang, S., Nic, J.P., and Mikkola, D.E., Scripta Met. et Mat. 24, 57 (1990).Google Scholar
30. Parfitt, L.J., Smialek, J.L., Nic, J.P., and Mikkola, D.E., Scripta Met. et Mat. 25, 727 (1991).Google Scholar
31. Meier, G.H., Birks, N., Pettit, F.S., and Grabke, H.J., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS Warrendale, PA, 1993) pp. 861877.Google Scholar
32. Meier, G.H. et al., Mater. Sci. Eng. A155, 165 (1992).Google Scholar
33. McKee, D.W. and Huang, S.C., Corrosion Science 33, 1899 (1992).Google Scholar
34. Klansky, J.L., Nic, J.P., and Mikkola, D.E., J. Mater. Res. 9, 255 (1994).Google Scholar
35. Brady, M.P., Smialek, J.L., and Humphrey, D. L., in High Temperature Ordered Intermetallics VI, edited by Horton, J., Noebe, R., Baker, I., and Hanada, S., (Mater. Res. Soc, This Proceedings, Pittsburgh, PA, 1994).Google Scholar
36. Meschter, P.J., Metall. Trans. 23A, 1763 (1992).Google Scholar
37. Chou, T.C. and Nieh, T.G., Scripta Met. et Mat. 27, 19 (1992).Google Scholar
38. Berztiss, D.A., Cerchiara, R.R., Gulbransen, E.A., Pettit, F.S. and Meier, G.H., Mater. Sci. Eng. A155, 165 (1992).Google Scholar
39. Doychak, J. and Hebsur, M.G. in Microscopy of Oxidation, edited by Bennett, M. and Lorimer, G. W. (Institute of Metals, London, 1991), pp. 206224.Google Scholar
40. Doychak, J., Dickerson, R., and Hull, D., NASA Lewis Research Center, 1993 (unpublished research).Google Scholar
41. Chou, T.C. and Nieh, T.G., J. Mater. Res. 8, 1605 (1993).Google Scholar
42. Jacobson, N.S., J. Amer. Ceram. Soc. 76, 3 (1993).Google Scholar
43. Robinson, R.C., Stearns, C.A., and Smialek, J.L., NASA Lewis Research Center, 1994 (unpublished research).Google Scholar
44. Zheng, Z., Tressler, R.E., and Spear, K.E., Corrosion Science 33, 569 (1992).Google Scholar