Published online by Cambridge University Press: 01 January 1993
This paper investigates the effects of ion implantation and annealing for pure (a-Si) and hydrogenated amorphous silicon (a-Si:H). The photocarrier lifetime in as-deposited a-Si:H decreases from ≥200 to 3 ps after 1 MeV Si+ implantation to doses exceeding 1014/cm2. A comparison with relaxed a-Si suggests that damage generation in a-Si:H merely arises from displacements in the silicon network. Annealing of ion-damaged a-Si:H at 200-500 °C recovers the carrier lifetime to 60-100 ps as a result of hydrogen passivation of electrical defects. However, Raman spectroscopy shows that hydrogen does not significantly enhance long-range network relaxations during annealing. This implies that thermal treatments of ion-implanted a-Si:H can not fully recover the as-deposited state.