Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:27:48.733Z Has data issue: false hasContentIssue false

The Sensitivity of Small Molecule Sorption to Annealing inGlassy Liquid Crystalline Polymers

Published online by Cambridge University Press:  15 February 2011

Atsushi Morisato
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
N. R. Miranda
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
J. T. Willits
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
G. R. Cantrell
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
B. D. Freeman
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
H. B. Hopfenberg
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
S. Makhija
Affiliation:
Hoechst Celanese Corp., Robert L. Mitchell Technical Center, 86 Morris Ave., Summit, NJ 07901
I. Haider
Affiliation:
Hoechst Celanese Corp., Robert L. Mitchell Technical Center, 86 Morris Ave., Summit, NJ 07901
M. Jaffe
Affiliation:
Hoechst Celanese Corp., Robert L. Mitchell Technical Center, 86 Morris Ave., Summit, NJ 07901
Get access

Abstract

The sorption of organic penetrants is found to be sensitive to thermalannealing conditions in a series of glassy, nematic, thermotropic, randomcopolyesters. Controlled thermal annealing of two polymers in this seriespermitted a systematic variation of chain packing and, presumably, higherorder molecular suprastructure, ranging from a disordered amorphousmorphology to More ordered nematic liquid crystalline and semi-crystallinemorphologies. The development of liquid crystalline order appears to reduceor preclude small molecule solubility in nematically ordered forms of thesepolymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miranda, N. R., Willits, J. T., Freeman, B. D. and Hopfenberg, H. B., Membrane, J. Sci., in press.Google Scholar
2. Weinkauf, D. H. and Paul, D. R., in Barrier Polymers and Barrier Structures, edited by Koros, W. J., (AMerican Chemical Society, Washington, D.C., 1990), p. 60.Google Scholar
3. Puleo, A. C., Paul, D. R. and Wong, P. K., Polymer, 30, 1357 (1989).Google Scholar
4. Donald, A. M. and Windle, A. H., Liquid Crystalline Polymers, (Cambridge University Press, Cambridge, 1992), p. 310.Google Scholar
5. Anwar, A. and Windle, A. H., Polymer, 34, 3347 (1993).Google Scholar
6. Rojstaczer, S. R. and Stein, R. S., Macromolecules, 23, 4863 (1990).Google Scholar
7. Shiwaku, T., Nakai, A., Hasegawa, H. and Hashimoto, T., Polym. Comm., 28, 174 (1987).Google Scholar
8. Cantrell, G. R., Freeman, B. D., Hopfenberg, H. B., Makhija, S., Haider, I. and Jaffe, M., in Liquid Crystalline Polymers, edited by Carfagna, C., (Pergamon Press, Oxford, in press).Google Scholar
9. Crank, J. and Park, G. S., in Diffusion in Polymers, edited by Crank, J. and Park, G. S., (Academic Press, New York, 1968), p. 1.Google Scholar
10. Berens, A. R., J. Appl. Polym. Sci., 37, 901 (1989).Google Scholar
11. Rafalko, J. J., Borzo, M., Choe, W. and Jaffe, M., ACS Polymer Preprints, 34, 770 (1993).Google Scholar