Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:34:56.145Z Has data issue: false hasContentIssue false

Sensitivity and Resolution Limits in Scanning Capacitance Microscopy

Published online by Cambridge University Press:  17 March 2011

'Stefan Lányi
Affiliation:
Institute of Physics, Slovakian Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
Miloslav Hruŝkovic
Affiliation:
Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
Get access

Abstract

The capacitance detection techniques, applicable to Scanning Capacitance Microscopes, have been analyzed from the point of view of signal-to-noise ratio that finally affects the achievable lateral resolution. It was found that comparable sensitivities can be achieved from relatively low frequencies below 1 MHz up to the GHz region. On conducting surfaces, resolution better than 5 nm has been achieved. It is limited by the minimum probe-to-sample distance, below which large tunneling current would occur. Increasing the applied voltage above a few volts increases the sensitivity at the cost of lateral resolution, since, at high voltage and small probe-sample distance, field emission could occur.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bugg, C.D. and King, P.J., J. Phys. E 21 (1988) 147.Google Scholar
2. Kleinknecht, H.P., Sandercock, J.R. and Meier, H., Scan. Microsc. 2 (1988) 1839.Google Scholar
3. Williams, C.C., Hough, W.P. and Rishton, S.A., Appl. Phys. Lett. 55 (1989) 203.Google Scholar
4. Lányi, Ŝ, Török, J. and Rehůrek, P., Rev. Sci. Instrum. 65 (1994) 2258.Google Scholar
5. Semiconductor Association, 4300 Stevens Creek Boulevard, Suite 271, San Jose, CA 95129.Google Scholar
6. Huang, Y. and Williams, C.C., J. Vac. Sci. Technol. B 12 (1994) 369.Google Scholar
7. Zavyalov, V.V., McMurray, J.S. and Williams, C.C., Rev. Sci. Instrum. 70 (1999) 158.Google Scholar
8. Palmer, R.C., Denlinger, E.J. and Kawamoto, H., RCA Rev. 43 (1982) 194.Google Scholar
9. Martin, Y., Abraham, D.W. and Wickramasinghe, H.K., Appl. Phys. Lett. 52 (1988) 1103.Google Scholar
10. Lányi, Ŝ and Török, J., J. Electrical Eng. 46 (1995) 126.Google Scholar
11. Lányi, Ŝ, Török, J. and Rehůrek, P., J. Vac. Sci. Technol. B 14 (1996) 892.Google Scholar
12. Lányi, Ŝ, submitted to Acta Phys. Slovaca.Google Scholar
13. Lányi, Ŝ, Meas. Sci. Technol. 12, 1456 (2001).Google Scholar
14. Lányi, Ŝ, J. Electr. Eng. 52, 338 (2001).Google Scholar
15.Burr-Brown Integrated Circuits Data Book-Linear Products 1996.Google Scholar
16. Lányi, Ŝ and Hruŝkovic, M., Electrically Based Microstructural Characterization II, Mat. Res. Soc. Symp. Proc. Vol. 500, Materials Research Society, Warrendale, PA 1998.Google Scholar
17. Li, Y., Nxumalo, J.N. and Thomson, D.J., J. Vac. Sci. Technol. B 16 (1998) 457.Google Scholar