Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:56:58.717Z Has data issue: false hasContentIssue false

Semiconductor Nanocrystals formed in SiO2 by Ion Implantation

Published online by Cambridge University Press:  28 February 2011

Jane G. Zhu
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge, TN 37831
C. W. White
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge, TN 37831
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge, TN 37831
S. P. Withrow
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge, TN 37831
Get access

Abstract

Nanocrystals of group IV (Si, Ge and SiGe), III-V (GaAs), and II-VI (CdSe) semiconductor materials have been fabricated inside SiO2 by ion implantation and subsequent thermal annealing. The microstructure of these nanocrystalline semiconductor materials has been studied by transmission electron microscopy (TEM). The nanocrystals form in near-spherical shape with random crystal orientations in amorphous SiO2 Extensive studies on the nanocrystal size distributions have been carried out for the Ge nanocrystals by changing the implantation doses and the annealing temperatures. Remarkable roughening of the nanocrystals occurs when the annealing temperature is raised over the melting temperature of the implanted semiconductor material. Strong red photoluminescence peaked around 1.67 eV has been achieved in samples with Si nanocrystals in SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Wilson, W. L., Szajowski, P. F., and Brus, L. E., Science 262, 1242 (1993).Google Scholar
3 Littau, K. A., Szajowski, P. J., Miller, A. J., Kortan, A. R., and Brus, L. E., J. Phys. Chem. 97, 1224 (1993).Google Scholar
4 Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Appl. Phys. 75, 7779 (1994).Google Scholar
5 Jain, R. K. and Lind, R. C., J. Opt. Soc. Am. 73, 647 (1983).Google Scholar
6 Hanamura, E., Phys. Rev. B 37, 1273 (1988).Google Scholar
7 Brus, L., Appl. Phys. A 53, 465 (1991).Google Scholar
8 Murry, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993), and the references therein.Google Scholar
9 Juen, S., Überbacher, K., Baldauf, J., Lamprecht, K. F., Tessadri, R., Lackner, R., Höpfel, R. A., Superlattices and Microstructures 11, 181 (1992).Google Scholar
10 Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1991).Google Scholar
11 Osaka, Y., Tsunetomo, K., Toyomura, F., Myoren, H., and Kohno, K., Jpn. J. Appl. Phys. 31, L365 (1992).Google Scholar
12 Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 31, 3840 (1993).Google Scholar
13 Werwa, E., Seraphin, A. A., Chiu, L. A., Zhou, C., and Kolenbrander, K. D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
14 Liu, X., Wu, X.. Bao, X., and He, Y., Appl. Phys. Lett. 64, 220 (1994).Google Scholar
15 Atwater, H. A., Shcheglov, K. V., Wong, S. S., Vahala, K. J., Flagan, R. C., Brongersma, M. L., and Polman, A., Mat. Res. Soc. Symp. Proc. 316, 409 (1994).Google Scholar
16 White, C. W., Budai, J. D., Withrow, S. P., Pennycook, S. J., Hembree, D. M., Zhou, D. S., Vo-Dinh, T., and Magruder, R. H., Mat. Res. Soc. Symp. Proc. 316, 487 (1994).Google Scholar
17 White, C. W., Budai, J. D., Zhu, J. G., Withrow, S. P., Zuhr, R. A., Chen, Y., Hembree, D. M., Magruder, R. H., and Henderson, D. O., in this proceedings book.Google Scholar