Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:21:03.606Z Has data issue: false hasContentIssue false

Self-Patterning Rear Contact Schemes for Silicon Solar Cells

Published online by Cambridge University Press:  10 January 2012

Alison Lennon
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
Pei Hsuan Lu
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
Zhong Lu
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
Kai Wang
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
Get access

Abstract

Higher silicon solar efficiencies are possible if metal contact is made to the cell though openings in a well-passivated surface. Patterning for rear point-contact schemes has typically been achieved using deterministic patterning methods involving either the use of photolithography, laser or inkjet patterning. However, with these approaches it is difficult to achieve cost-effective, high-throughput and robust processing if very small and closely-spaced openings are required. In this paper we review recent progress in the use of self-patterning anodised aluminium oxide layers to both passivate and enable point metal contacts to the rear surface of silicon solar cells. We describe a wet chemical method for anodising aluminium layers thermally-evaporated on the rear surfaces of silicon solar cells, and demonstrate that the layers can result in excellent passivation of the underlying silicon and also enable metal contact to the solar cell. Additionally, we describe how patterning of either the anodic aluminium oxide layer or the source aluminium layer can result in patterns of metallic and dielectric regions on a surface, and how currently-available solar cell electroplating tools can be adapted to achieve anodisation of solar cells at commercial processing throughput rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, J., Wang, A. and Green, M. A., Prog. Photovolt: Res.. & Appl. 7, 471474 (1999).Google Scholar
2. Swanson, R. M., Beckwith, S. K., Crane, R. A., Eades, W. D., Young Hoon, K., Sinton, R. A. and Swirhun, S. E., IEEE Trans. on Electron Devices 31(5), 661664 (1984).Google Scholar
3. Schneiderlöchner, E., Preu, R., Lüdemann, R. and Glunz, S. W., Prog. Photovolt: Res.. & Appl. 10(1), 2934 (2002).Google Scholar
4. Lennon, A., Utama, R., Lenio, M., Ho-Baillie, A., Kuepper, N. and Wenham, S. R., Sol. Energy Mater. Sol. Cells 92, 14101415 (2008).Google Scholar
5. Lenio, M., Howard, J., Jentschke, F., Lennon, A. and Wenham, S. R., Proc. of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA, (2011).Google Scholar
6. Lu, P. H., Lu, Z., Wang, K., Lennon, A. and Wenham, S. R., Proc. of the 37th IEEE Photovoltaics Specialist Conference, Seattle, USA, (2011).Google Scholar
7. Diggle, J. W., Downie, T. C. and Goulding, C. W., Chem. Rev. 69(3), 365405 (1969).Google Scholar
8. Lu, Z., Lu, P. H., Wang, K. and Lennon, A., Proc. of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, Japan, (2011).Google Scholar
9. Wang, K., Lu, P. H., Lu, Z. and Lennon, A., Proc. of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, Japan, (2011).Google Scholar
10. Lu, P. H., Chen, Y. and Lennon, A., Proc. of the Solar 2011 Conference, Canberra, Australia, (2010).Google Scholar
11. Schmidt, J., Merkle, A., Hoex, B., van de Sanden, M. C. M. and Kessels, W. M. M., Proc. of the 33rd IEEE Photovoltaics Specialist Conference, San Diego, USA, (2008).Google Scholar
12. Lambert, J., Guthmann, C., Ortega, C. and Saint-Jean, M., Journal of Applied Physics 91(11), 91619169 (2002).Google Scholar
13. Vrublevsky, I., Jagminas, A., Schreckenbach, J. and Goedel, W. A., Applied Surface Science 253(10), 46804687 (2007).Google Scholar
14. Lu, Z., Anodic Aluminium Oxide for Rear Point Contact Silicon Solar Cells, Undergraduate Thesis, The University of New South Wales, (2011).Google Scholar
15. Lennon, A., Allen, V., Ho-Baillie, A. and Wenham, S. R., Proc. of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 993-996, (2009).Google Scholar
16. Lennon, A., Ho-Baillie, A. and Wenham, S. R., Sol. Energy Mater. Sol. Cells 93, 18651874 (2009).Google Scholar
17. Lennon, A., Ho-Baillie, A. and Wenham, S. R., Proc. of the Optoelectronic and Microelectronic Materials and Devices (COMMAD 2008), Sydney, Australia, 170-173, (2008).Google Scholar
18. Rodriguez, J., Lennon, A., Mei, H., Chan, C., Lu, P. H., Yao, Y. and Wenham, S. R., Proc. of the Digital Fabrication Conference, Minneapolis, USA, (2011).Google Scholar
19. Li, Z., Cordiner, D., Borojevic, N., Rodriguez, J. and Lennon, A., Proc. of the 21st International Photovoltaic Science and Engineering Conference, Yokohama, Japan, (2011).Google Scholar