Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:31:05.918Z Has data issue: false hasContentIssue false

Self-Organized GaN/AlN Superlattice Nanocolumn Crystals Grown by RF-MBE

Published online by Cambridge University Press:  01 February 2011

Kouji Yamano
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University, 7–1 Kioi-cho, Chiyoda-ku, Tokyo 102–8554, JAPAN.
Akihiko Kikuchi
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University, 7–1 Kioi-cho, Chiyoda-ku, Tokyo 102–8554, JAPAN.
Katsumi Kishino
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University, 7–1 Kioi-cho, Chiyoda-ku, Tokyo 102–8554, JAPAN.
Get access

Abstract

GaN nanocolumns including a GaN/AlN superlattice (SL) region were grown by rf-plasma assisted molecular beam epitaxy. The photoluminescence (PL) peak intensity of the GaN/AlN SL nanocolumns was 300∼500 times stronger than that of conventional GaN continuous films with a dislocation density of 3∼5×109 cm−2 and thickness of 3.75 μm grown by metalorganic chemical vapor deposition (MOCVD). The peak wavelengths of the GaN (10.2 ML)/AlN (15.2 ML) SL and GaN (7.7 ML)/AlN (12.4 ML) SL were 420 and 380 nm, respectively. The theoretically calculated transition wavelength agreed well with experimental values, suggesting that GaN/AlN SL nanocolumns involve a large built-in electrostatic field of about 5.8 MV/cm. The effect of the surface morphology of nanocolumns on the PL intensity was studied using GaN/AlN SL nanocolumns with different surface morphologies but with the same nanocolumn structure. Integrated PL intensity was increased by a factor of 2.2 upon changing the surface morphology from continuous to columnar.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshizawa, M., Kikuchi, A., Mori, M., Fujita, N. and Kishino, K., Summaries, 23rd Int. Symp. Compound Semiconductors, St. Petersburg, Russia, 02.1.03 (1996).Google Scholar
2. Yoshizawa, M., Kikuchi, A., Mori, M., Fujita, N. and Kishino, K., Jpn. J. Appl. Phys., 36, L459 (1997).Google Scholar
3. Garcia, M. A. S., Calleja, E., Monroy, E., Sanchez, F. J., Calle, F., Munoz, E. and Beresford, R., J. Cryst. Growth 183, 23 (1998).Google Scholar
4. Callja, E., Garcia, M. A. S., Sanchez, F. J., Calle, F., Naranjo, F. B., Munoz, E., Molina, S. I., Sanchez, A. M., Pacheco, F.J. and Gracia, R., J. Cryst. Growth 201/202, 296 (1999).Google Scholar
5. Mamutin, V. V., Vekshin, V. A., Jmerik, V. N., Ratnikov, V. V., Davydov, V. Y., Cherkashin, N. A., Ivanov, S. V., Pozina, G., Bergman, J. P. and Monemar, B., Proc. Int. Workshop on Nitride Semiconductors, IPAP Conf. Series 1, 413 (2000).Google Scholar
6. Araki, T., Chiba, Y., Nobata, M., Nishioka, Y. and Nanishi, Y., J. Cryst. Growth 209, 368 (2000).Google Scholar
7. Kim, H. M., Kim, D. S., Kim, D. Y., Kang, T. W., Cho, Y. H. and Chung, K. S., Appl. Phys. Lett. 81, 2193 (2002).Google Scholar
8. Kikuchi, A., Yamano, K., Tada, M. and Kishino, K., Phys. Stat. Sol. 241, 2754 (2004).Google Scholar
9. Tada, M., Kikuchi, A. and Kishino, K., Abstr. European Mater. Res. Soc. Fall Meet. Warsaw, Poland, Symposium C, p. 94 (2004).Google Scholar
10. Kikuchi, A., Kawai, M., Tada, M. and Kishino, K., Jpn. J. Appl. Phys. 43, L1524 (2004).Google Scholar
11. Yoshizawa, M., Kikuchi, A., Fujita, N., Kushi, K., Sasamoto, H. and Kishino, K., J. Cryst. Growth 189/190, 138 (1998).Google Scholar
12. Rictic, J., Garcia, M. A. S., Ulloa, J. M., Calleja, E., Paramo, J. S., Calleja, J. M., Jahn, U., Trampert, A. and Ploog, K. H., Phys. Stat. Sol. (b) 234, 717 (2002).Google Scholar
13. Wright, A. F., J. Appl. Phys. 82, 2833 (1997).Google Scholar
14. Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar