Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:33:52.689Z Has data issue: false hasContentIssue false

Self-Organization of Surface Patterns during Clustering

Published online by Cambridge University Press:  10 February 2011

Martin Zinke–Allmang
Affiliation:
Department of Physics, University of Western Ontario, London, ON N6A 3K7, Canada
Oleksa Hul'ko
Affiliation:
Department of Physics, University of Western Ontario, London, ON N6A 3K7, Canada
Sywert Brongersma
Affiliation:
Department of Physics, University of Western Ontario, London, ON N6A 3K7, Canada
Graham Carlow
Affiliation:
Department of Physics, University of Western Ontario, London, ON N6A 3K7, Canada
Get access

Abstract

Ostwald ripening, early stage and late stage coalescence growth are well–characterized, fundamental late–stage processes in the phase separation of thin film deposits on surfaces. These processes have recently been studied in respect to ordering of the clustered phase. While late stage coalescence growth is associated with random positions of the growing clusters, partial ordering is observed for early stage coalescence and ripening

To obtain even higher order of clustering, additional physical driving forces must be included in the process. Two examples are discussed, one utilizing vertical correlation of clusters in super-lattice growth of coherent Stranski–Krastanov structures (coalescence based structures) and a novel concept based on preferential secondary clustering based on ripening morphologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
2. Tersoff, J., Teichert, C., and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
3. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993); D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 (1994); D. Leonard, M. Krishnamurthy, S. Fafard, J. L. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994); D. Leonard, S. Fafard, K. Pond, Y. H. Zhang, J. L. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 2516 (1994).Google Scholar
4. Ruvimov, S., Werner, P., Scheerschmidt, K. et al. , Phys. Rev. B 51, 14766 (1995); D. Bimberg, M. Grundmann, N. N. Ledentsov, et al., Thin Solid Films 267, 32 (1995); M. Grundmann, J. Christen, N. N. Ledentsov, et al., Phys. Rev. Lett. 74, 4043 (1995).Google Scholar
5. Zinke–Allmang, M., Feldman, L. C., and Grabow, M. H., Surf. Sci. Rep. 16, 377 (1992); M. Zinke–Allmang, Thin Solid Films (1999), to be published.Google Scholar
6. Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
7. Tringides, M. C., Wu, P. K., and Lagally, M. G., Phys. Rev. Lett. 59, 315 (1987).Google Scholar
8. Family, F. and Meakin, P., Phys. Rev. Lett. 61, 428 (1988); Phys. Rev. A 40, 3836 (1989).Google Scholar
9. Venables, J. A., Surf. Sci. 299/300, 798 (1993).Google Scholar
10. Bartelt, M. C. and Evans, J. W., Phys. Rev. B 46, 12675 (1992); Surf. Sci. 298, 421 (1993); M. C. Bartelt, M. C. Tringides, and J. W. Evans, Phys. Rev. B 47, 13891 (1993); C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vvedensky, Phys. Rev. Lett. 72, 3194 (1994).Google Scholar
11. Seifert, W., Carlsson, N., Miller, M., Pistol, M.-E., Samuelson, L., and Wallenberg, L. R., Prog. Cryst. Growth Charact. 33, 423 (1996) and references therein.Google Scholar
12. Kamins, T. I., Karr, E. C., Williams, R. S., and Rosner, S. J., J. Appl. Phys. 81, 211 (1997); M. Goryll, L. Vescan, K. Schmidt, S. Mesters, H. Ltith, and K. Szot, Appl. Phys. Lett. 71, 410 (1997); F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80, 984 (1998).Google Scholar
13. Cullis, A. G., Robbins, D. J., Barnett, S. J., and Pidduck, A. J., J. Vac. Sci. Technol. A 12, 1924 (1994); P. O. Hannson, M. Albrecht, H. P. Strunk, E. Bauser, and J. H. Werner, Thin Solid Films 216, 199 (1992).Google Scholar
14. Teichert, C., Lagally, M. G., Peticolas, L. J., Bean, J. C., and Tersoff, J., Phys. Rev. B 53, 16334 (1996).Google Scholar
15. Mo, Y.–W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990); Y.–W. Mo and M. G. Lagally, J. Cryst. Growth 111, 876 (1991).Google Scholar
16. Eaglesham, D. J. and Hull, R., Mater. Sci. Eng. B 30, 197 (1995).Google Scholar
17. Sakai, A. and Tatsumi, T., Phys. Rev. Lett. 71, 4007 (1993); Appl. Phys. Lett. 64, 52 (1994).Google Scholar
18. Krishnamurthy, M., Drucker, J. S., and Venables, J. A., J. Appl. Phys. 69, 6461 (1991).Google Scholar
19. Viovy, J. L., Beysens, D., and Knobler, C. M., Phys. Rev. A 37, 4965 (1988); T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. A 38, 5303 (1988).Google Scholar
20. Zinke–Allmang, M., Feldman, L. C., and Saarloos, W. van, Phys. Rev. Lett. 68, 2358 (1992).Google Scholar
21. Beysens, D. A., Knobler, C. M., and Schaffar, H., Phys. Rev. B 41, 9814 (1990); A. Steyer, P. Guenoun, D. Beysens, and C. M. Knobler, Phys. Rev. A 44, 8271 (1991).Google Scholar
22. Barel, R., Carlow, G. R., Zinke–Allmang, M., Wu, Y., and Lookman, T., Physica A 239, 53 (1997).Google Scholar
23. Yao, J. H., Elder, K. R., Guo, H., and Grant, M., Physica A 204, 770 (1994).Google Scholar
24. Barel, R., Mai, Y., Carlow, G. R., and Zinke-Allmang, M., Appl. Surf. Sci. 104/105, 669 (1996).Google Scholar
25. Akaiwa, N. and Voorhees, P. W., Phys. Rev. E 49, 3860 (1994); N. Akaiwa and D. I. Meiron, Phys. Rev. E 51, 5408 (1995).Google Scholar
26. Sagui, C. and Desai, R. C., Phys. Rev. Lett. 71, 3995 (1993); ibid. 74, 1119 (1995); Phys. Rev. E 49, 2225 (1994); ibid. 52, 2807, 2822 (1995).Google Scholar
27. Krichevsky, O. and Stavans, J., Phys. Rev. Lett. 70, 1473 (1993); Phys. Rev. E 52, 1818 (1995).Google Scholar
28. Seul, M., Morgan, N. Y., and Sire, C., Phys. Rev. Lett. 73, 2284 (1994).Google Scholar
29. Carlow, G. R. and Zinke–Allmang, M., Phys. Rev. Lett. 78, 4601 (1997).Google Scholar
30. Ledentsov, N. N., Shchukin, V. A., Grundmann, M. et al. , Phys. Rev. B 54, 8743 (1996); N. N. Ledentsov, J. Böhrer, D. Bimberg, et al., Appl. Phys. Lett. 69, 1095 (1996).Google Scholar
31. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
32. Ziegler, J. F. and Biersack, J. P., The Stopping and Range oflons in Solids (Pergamon Press, New York, 1985).Google Scholar
33. Köhler, U., Jusko, O., Pietsch, G., Mfiller, B., and Henzler, M., Surf. Sci. 248, 321 (1991).Google Scholar
34. Mo, Y.–W., Kleiner, J., Webb, M. B., and Lagally, M. G., Phys. Rev. Lett. 66, 1998 (1991); Surf. Sci. 268, 275 (1992).Google Scholar