Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:29:47.605Z Has data issue: false hasContentIssue false

Self-Organization of Semiconductor Quantum Nanocrystals on Carbon Single-Wall Nanotubes into Close-Packed Linear Arrays

Published online by Cambridge University Press:  01 February 2011

C. Engtrakul
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
J. M. Nedeljkovic
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
Y.-H. Kim
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
S. P. Ahrenkiel
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
K. E. H. Gilbert
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
J. L. Alleman
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
S. B. Zhang
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
O. I. Micic
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
A. J. Nozik
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
M. J. Heben
Affiliation:
Center for Basic Sciences, National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

We report the synthesis of organized colloidal semiconductor nanocrystal / carbon singlewalled nanotube hybrid nanostructures. The synthetic protocol described here avoids the need for covalent chemical modification of carbon nanotube (CNT) surfaces. Specifically, InP quantum dots (QDs) and CdSe QDs were found to strongly adsorb onto the surfaces of carbon single-walled nanotubes (SWNTs) by gentle heating in organic solvents. Transmission electron microscopy (TEM) was used to characterize the semiconductor nanocrystal (NC) / SWNT assemblies, and revealed that the surfaces of the SWNT bundles template the adsorption of the NCs from solution. Small QDs were found to randomly absorb onto SWNTs, while larger QDs self-assembled into long linear chains. The nature of binding and ordering was investigated by simply considering van der Waals (vdW) forces for both NC-SWNT and NC-NC interactions. Quantum rods (QRs) were also found to adsorb along the nanotube surfaces. These findings have important implications for the synthesis of NC / SWNT hybrid nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avouris, Ph., Acc. Chem. Res. 35, 10261034 (2002).Google Scholar
2. Dresselhaus, M. S., Dresselhaus, G., and Saito, R., Solid State Commun. 84, 201205 (1992).Google Scholar
3. Alivisatos, A. P., J. Phys. Chem. 100, 1322613239 (1996).Google Scholar
4. Haremza, J. M., Hahn, M. A., and Krauss, T. D., Nano Lett. 2 (11), 12531258 (2002).Google Scholar
5. Banerjee, S. and Wong, S. S., Nano Lett. 2 (3), 195200 (2002).Google Scholar
6. Ravindran, S., Chaudhary, S., Colburn, B., Ozkan, M., and Ozkan, C. S., Nano Lett. 3 (4), 447453 (2003).Google Scholar
7. Han, W. Q. and Zettl, A., Nano Lett. 3 (5), 681683 (2003).Google Scholar
8. Li, X. H., Niu, J. L., Zhang, J., Li, H. L., and Liu, Z. F., J. Phys. Chem. B 107 (11), 24532458 (2003).Google Scholar
9. Banerjee, S. and Wong, S. S., J. Am. Chem. Soc. 125, 1034210350 (2003).Google Scholar
10. Banerjee, S. and Wong, S. S., Adv. Mater. 16, 3437 (2004).Google Scholar
11. Dillion, A.C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A., and Heben, M. J., Adv. Mater. 11 (16), 13541358 (1999).Google Scholar
12. Micic, O. I., Jones, K. M., Cahill, A., and Nozik, A. J., J. Phys. Chem. B 102, 97919796 (1998).Google Scholar
13. Peng, Z. A. and Peng, X., J. Am. Chem. Soc. 124, 33433353 (2002).Google Scholar
14. Peng, Z. A. and Peng, X., J. Am. Chem. Soc. 123, 183184 (2001).Google Scholar
15. Peng, X. G., Wickham, J., and Alivisatos, A. P., J. Am. Chem. Soc. 120, 53435344 (1998).Google Scholar
16. Ohara, P. C., Leff, D. V., Heath, J. R., and Gelbart, W. M., Phys. Rev. Lett. 75, 34663469 (1995).Google Scholar
17. Motte, L., Lacaze, E., Maillard, M., and Pileni, M. P., Langmuir 16, 38033812 (2000).Google Scholar
18. Bowling, R. A., J. Electrochem. Soc. 132, 22082214 (1985).Google Scholar
19. Mao, Z., Garg, A., and Sinnott, S. B., Nanotechnology 10, 273277 (1999).Google Scholar