Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:33:01.449Z Has data issue: false hasContentIssue false

Self-Compensation and Doping Problems in ZnSe

Published online by Cambridge University Press:  25 February 2011

David B. Laks
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Chris G. Van de Walle
Affiliation:
Philips Laboratories, Briarcliff Manor, NY 10510 USA and Xerox Palo Alto Research Center, Palo Alto, CA 94304 (present address)
Get access

Abstract

We examine native-defect compensation, solubility limits, and dopant self-compensation in ZnSe. Our results are based on a formalism, using first-principles density-functional theory, that treats dopant atoms and native defects on an equal footing. For the case of acceptor doping of ZnSe with Li, we find that compensation due to interstitial Li donors and to native donor defects can be reduced to a tolerable level by carefully adjusting the growth conditions. A more serious impediment to Li doping comes from the solubility limit of Li in ZnSe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Park, Y. S. and Shin, B. K., in Topics in Applied Physics (Springer Verlag, Berlin, 1977), Vol. 17, p. 133.Google Scholar
[2] Bhargava, R., J. Crystal Growth 59, 15 (1982).CrossRefGoogle Scholar
[3] Neumark, G. F., Phys. Rev. Lett. 62, 1800 (1989).Google Scholar
[4] Cheng, H., DePuydt, J. M., Potts, J. E., and Haase, M. A., J. Crystal Growth 95, 512 (1989).Google Scholar
[5] Park, R. M. et al., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
[6] Mandel, G., Phys. Rev. 134, A1073 (1964).Google Scholar
[7] Jansen, R. W. and Sankey, O. F., Phys. Rev. B 39, 3192 (1989).Google Scholar
[8] Laks, D. B., Van de Walle, C. G., Neumark, G. F., and Pantelides, S. T., Phys. Rev. Lett. 66, 648 (1991).Google Scholar
[9] Kröger, F. A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).Google Scholar
[10] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Saunders College, Philadelphia, 1976).Google Scholar
[11] Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979).Google Scholar
[12] Bachelet, G. B., Hamann, D. R., and Schlüter, M., Phys. Rev. B 26, 4199 (1982).CrossRefGoogle Scholar
[13] Natarajan, R. and Vanderbilt, D., J. Comput. Phys. 82, 218 (1989).CrossRefGoogle Scholar
[14] Louie, S. G., Froyen, S., and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).Google Scholar
[15] Blöchl, P. E. and Pantelides, S.T., (To be published).Google Scholar
[16] Blöchl, P. E. et al., in Proceedings of Int. Conf. on Physics of Semiconductors (World Scientific, Thessaloniki, 1990).Google Scholar
[17] Lange's Handbook of Chemistry, 13 ed., edited by Dean, J.A. (McGraw-Hill, New York).Google Scholar
[18] Watkins, G. D., in Proceedings of International Conference on Science and Technology of Defect Control in Semiconductors (Yokohama, 1989).Google Scholar
[19] Zhang, S. B. and Northrup, J. E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
[20] Haase, M. A., Cheng, H., Depuydt, J. M., and Potts, J. E., J. Appl. Phys. 67, 448 (1990).Google Scholar
[21] Van de Walle, C. G. and Laks, D. B., these Proceedings.Google Scholar