Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:12:28.076Z Has data issue: false hasContentIssue false

Self-assembly of Silicon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Ming Xie
Affiliation:
[email protected], Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Jiesheng Wang
Affiliation:
[email protected], Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Chee Huei Lee
Affiliation:
[email protected], Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Yoke Khin Yap
Affiliation:
[email protected], Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Get access

Abstract

The growth of silicon nanotubes (SiNTs) by a dual-RF-plasma treatment technique is reported here. These SiNTs are vertically aligned and self-assembled from Si substrates at 500 degree Celsius by the use of Cu catalysts. Their diameters are ∼50 to 80 nm with tubular wall thickness of ∼10-15nm. Cu vapors were found partially filled inside the SiNTs. This is a novel technique that can convert bulk materials into their nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morales, A.M., Lieber, C.M., Science 279, 208 (1998).Google Scholar
2. Yu, D.P., Lee, C.S., Bello, I., Zhou, G.W., Bai, Z.G., Solid State Commun. 105, 403 (1998).Google Scholar
3. Zhang, F., Tang, Y. H., Peng, H. Y., Wang, N., Lee, C. S., Bello, I., Lee, S. T., Appl. Phys. Lett. 75, 1842 (1999).Google Scholar
4. Fagan, S.B., Baierle, R.J., Mota, R., Silva, A.J.R. da, Fazzio, A., Phys. Rev. B 61, 9994 (2000).Google Scholar
5. Seifert, G., Kohler, T., Urbassek, H.M., Hernandez, E., Frauenheim, T., Phys. Rev. B 63, 193409 (2001).Google Scholar
6. Zhang, R.Q., Lee, S.T., Law, C.K., Li, W.K., Teo, B.K., Chem. Phys. Lett. 364, 251 (2002).Google Scholar
7. Ivanovskaya, V.V., Sofronov, A.A., Ivanosvkii, A.L., Phys. Lett. A 297, 436 (2002).Google Scholar
8. Zhang, M., Kan, Y.H., Zang, Q.J., Su, Z.M., Wang, R.S., Chem. Phys. Lett. 379, 81 (2003).Google Scholar
9. Kumar, V., Kawazoe, Y., Phys. Rev. Lett. 90, 55502 (2003).Google Scholar
10. Sha, J., Niu, J.J., Ma, X.Y., Xu, J., Zhang, X.B., Yang, Q., Yang, D., Adv. Mater. 14, 1219 (2002).Google Scholar
11. Jeong, S.Y., Kim, J.Y., Yang, H.D., Yoon, B.N., Choi, S.H., Kang, H.K., Yang, C.W., Lee, Y.H., Adv. Mater. 15, 1172 (2003).Google Scholar
12. Li, C., Liu, Z.T., Gu, C., Xu, X., Yang, Y., Adv. Mater. 18, 228 (2006).Google Scholar
13. Tang, Y.H., Pei, L.Z., Chen, Y.W., Guo, C., Phys. Rev. Lett. 95, 116102 (2005).Google Scholar
14. Yap, Y. K., Yoshimura, M., Mori, Y., Sasaki, T., J. Chem. Phys. 116, 6286 (2002).Google Scholar
15. Bhattacharyya, S., Samui, S., Appl. Phys. Lett. 84, 1564 (2004).Google Scholar
16. Piscanec, S., Cantoro, M., Ferrari, A.C., Zapien, J.A., Lifshitz, Y., Lee, S.T., Hofmann, S., Robertson, J., Phys. Rev. B 68, 241312 (R) (2003).Google Scholar
17. Struthers, J.D., J. Appl. Phys. 27, 1560 (1956).Google Scholar