Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:25:20.560Z Has data issue: false hasContentIssue false

Self-Assembly of Iron Nanoparticle Arrays

Published online by Cambridge University Press:  11 February 2011

S. A. Majetich
Affiliation:
Dept. of Physics, Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
D. F. Farrell
Affiliation:
Dept. of Physics, Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
Get access

Abstract

Surfactant-coated spherical iron-based nanoparticles 3.0–9.5 nm in diameter were synthesized and dispersed in hexane. TEM images of dried particle assemblies were taken and analyzed to discover the structure of the assemblies, and to establish the relationship between particle concentration, surfactant type, and conditions of drying and array structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrov, A. S. and Nagayama, K., “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces”, Langmuir 12, 13031311 (1996), and references therein.Google Scholar
2. Konishi, T. and Ise, N., “Single crystal colloidal silica particles in a dilute aqueous dispersion as studied by a two-dimensional ultrasmall-angle x-ray scattering”, Phy. Rev. B 57, 2655 (1998), and references therein.Google Scholar
3. Bean, C. P. and Livingston, J. D., “Superparamagnetism”, J. Appl. Phys., 30, 120S (1959).Google Scholar
4. Mörup, S and Christiansen, G., “Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites”, J. Appl. Phys., 73, 6955 (1993).Google Scholar
5. Mörup, S., Christensen, P. H., and Clausen, B. S., Magnetic Hyperfine Splitting in Superparamagnetic Particles in External Magnetic Fields, J. Magn. Magn. Mat., 68, 160 (1987).Google Scholar
6. Hansen, M. F., Koch, C. B., and Mörup, S., “Magnetic dynamics of weakly and strongly interacting hematite nanoparticles”, Phys. Rev. B, 62, 1124 (2000).Google Scholar
7. Yamamuro, S., Farrell, D. F., and Majetich, S. A., “Direct imaging of self-assembled magnetic nanoparticle arrays: Phase stability and magnetic effects on morphology”, Phys. Rev. B, 65, 224431 (2002).Google Scholar
8. Alder, B. J., Hoover, W. G., and Young, D. A., “Studies in Molecular Dynamics. V. High-Density Equation of State and Entropy for Hard Disks and Spheres”, J. Chem. Phys., 49, 3688 (1968).Google Scholar
9. Kirkwood, J. G., “Molecular Distribution in Liquids”, J. Chem. Phys., 7, 919 (1939).Google Scholar
10. Bartlett, P., Otterwill, R. H., and Pusey, P. N., “Superlattice formation in binary mixtures of hard sphere colloids”, Phys. Rev. Lett., 68, 3801 (1992).Google Scholar
11. Ohara, P. C., Leff, D. V., Heath, J. R., and Gelbart, W. M., “Crystallization of Opals from Polydisperse Nanoparticles”, Phys. Rev. Lett., 75, 3466 (1995).Google Scholar
12. Motte, L., Billoudet, F., and Pileni, M. P., “Self-Assembled Monolayer of Nanosized Particles Differing by Their Sizes”, J. Phys. Chem., 99, 16424 (1995).Google Scholar
13. Murray, C. B., Kagan, C. R., and Bawendi, M. G., “Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices”, Science, 270, 1335 (1995).Google Scholar
14. Sun, S. and Murray, C. B., “Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices”, J. Appl. Phys., 85, 4325 (1999).Google Scholar
15. Petit, C., Taleb, A., and Pileni, M. P., “Cobalt Nanosized Particles Organized in a 2D Superlattice: Synthesis, Characterization and Magnetic Properties”, J. Phys. Chem. B, 103, 1805 (1999).Google Scholar
16. Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”, Science, 287, 1989 (2000).Google Scholar
17. Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Bin Na, H., “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process”, J. Am. Chem. Soc., 123, 12798 (2001).Google Scholar
18. Whetten, R. L., Shafigullin, M. N., Khoury, J. T., Schaaff, T. G., Vezmar, I., Alvarez, M. M., and Wilkinson, A., Crystal Structure of Molecular Gold Nanocrystal Arrays, Acc. Chem. Res. 32, 397 (1999).Google Scholar
19. Korgel, B. A., Fullam, S., Connolly, S., and Fitzmaurice, D., “Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered ‘Soft Spheres’”, J. Phys. Chem. B, 102, 8379 (1998).Google Scholar
20. Yamamuro, S., Farrell, D., Humfeld, K., and Majetich, S. A., “Structure of Fe and FePt Nanoparticle Arrays”, MRS Symposium Proceedings, 636, D10.8.1–D10.8.6, (2001).Google Scholar
21. Farrell, D., Yamamuro, S., and Majetich, S. A., “Magnetic Properties of Fe Nanoparticle Arrays”, MRS Symp. Proc. 674, U4.4.1–U4.4.6 (2001).Google Scholar
22. Schöpe, H.-J. and Palberg, T., “Crystal nucleation versus vitrification in charged colloidal suspensions”, Progr. Colloid Polym. Sci., 118, 82 (2001).Google Scholar
23. Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., and Witten, T. A., “Contact line deposits in an evaporating drop”, Phys. Rev. E, 62, 756 (2000).Google Scholar
24. Fischer, B. J., “Particle Convection in an Evaporating Colloidal Droplet”, Langmuir, 18, 60 (2002).Google Scholar
25. Ohara, P. C., Heath, J. R., and Gelbart, W. M., “Self-Assembly of Submicrometer Rings of Particles from Solutions of Nanoparticles, Angew. Chem. Int. Ed. Engl., 36, 1078 (1997).Google Scholar
26. Courty, A., Araspin, O., Fermon, C., and Pileni, M. P., “Supracrystals” Made of Nanocrystals. 2. Growth on HOPG Substrate, Langmuir, 17, 1372 (2001).Google Scholar
27. Tang, J., Ge, G., and Brus, L. E., Gas-Liquid-Solid Phase Transition Model for Two-Dimensional Nanocrystal Self-Assembly on Graphite, J. Phys. Chem. B, 106, 5653 (2002).Google Scholar