Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T05:09:22.320Z Has data issue: false hasContentIssue false

Self-Assembly CoSi2-Nanostructures for Fabrication of Schottky Barrier MOSFETs on SOI

Published online by Cambridge University Press:  15 March 2011

Patrick Kluth
Affiliation:
Institut für Schichten und Grenzflächen (ISG-IT), Forschungszentrum Jülich, D-52425 Jülich, Germany
Qing-Tai Zhao
Affiliation:
Institut für Schichten und Grenzflächen (ISG-IT), Forschungszentrum Jülich, D-52425 Jülich, Germany
Stephan Winnerl
Affiliation:
Institut für Schichten und Grenzflächen (ISG-IT), Forschungszentrum Jülich, D-52425 Jülich, Germany
Siegfried Mantl
Affiliation:
Institut für Schichten und Grenzflächen (ISG-IT), Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

A new self-assembly patterning method for generation of epitaxial CoSi2 nanostructures was used to fabricate 70 nm gate-length Schottky barrier metal oxide semiconductor field effect transistors (SBMOSFETs) on silicon-on-insulator (SOI) substrates. This technique involves only conventional optical lithography and standard silicon processing steps. It is based on anisotropic diffusion of Co/Si atoms in a strain field during rapid thermal processing. The strain field is generated along the edges of a mask consisting of 20 nm SiO2 and 300 nm Si3N4. Single-crystalline CoSi2 layers grown by molecular beam allotaxy (MBA) on thin SOI substrates were patterned using this technique. During rapid thermal oxinitridation (RTON) of the masked silicide structure, a well defined separation of the silicide layer forms along the edge of the mask. These highly uniform gaps define the channel region of the fabricated device. The separated silicide layers act as metal source and drain. During the RTON-step a 6 nm thin SiO2 is formed on top of the gap which is used as a gate oxide. The SBMOSFETs can be driven as both p-channel and n-channel devices without complementary substrate doping and show good I-V characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. International Technology Roadmap for Semiconductors - ITRS 1999 Google Scholar
2. Zhao, Q.-T., Klinkhammer, F., Dolle, M., Kappius, L., and Mantl, S., Appl. Phys. Lett. 74, 454 (1999)Google Scholar
3. Kluth, P., Zhao, Q.-T., Winnerl, S., Lenk, S., and Mantl, S., Appl. Phys. Lett. 79, 824 (2001)Google Scholar
4. Tucker, J. R., Wang, C., and Carney, P. S., Appl. Phys. Lett. 67, 1420 (1995)Google Scholar
5. Huang, C. K., Zhang, W. E., and Yang, C. H., IEEE Trans. Electron Devices 45, 842 (1998)Google Scholar
6. Hareland, S. A., Tasch, A. F., and Maziar, C. M., Electron. Lett. 29, 1894 (1993)Google Scholar
7. Ieong, M., Solomon, P. M., Laux, S. E., Wong, H. S. P., and Chidambarro, D., IEDM-98, 733 (1998)Google Scholar
8. Mantl, S., J. Phys. D: Appl. Phys. 31, 1 (1998)Google Scholar
9. Rhoderick, E. H., and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), p. 129 Google Scholar
10. Maex, K., and Rossum, M. van (Edt.), Properties of Metal Silicides, INSPEC The Institution of Electrical Engineers, London (1995), p. 165 Google Scholar
11. Wang, C., Snyder, J. P., and Tucker, J. R., IEDM 97, (1997)Google Scholar
12. Wang, C., Snyder, J. P., and Tucker, J. R., Appl. Phys. Lett. 74, 1174 (1999)Google Scholar
13. Kedzierski, J., Xuan, P., Anderson, E. H., Bokor, J., King, T.-J., and Hu, C., IEDM 00, (2000)Google Scholar