Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:46:41.575Z Has data issue: false hasContentIssue false

Self-Assembled Monolayer Films for Nanofabrication

Published online by Cambridge University Press:  15 February 2011

Elizabeth A. Dobisz
Affiliation:
Code 6864, Electronics Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC 20375
F. Keith Perkins
Affiliation:
Code 6864, Electronics Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC 20375
Susan L. Brandow
Affiliation:
Code 6950, Center for Biomolecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC 20375
Jeffrey M. Calvert
Affiliation:
Code 6950, Center for Biomolecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC 20375
Christie R.K. Marrian
Affiliation:
Code 6804, Electronics Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC 20375
Get access

Abstract

Central to nanofabrication is the ability to transfer a pattern from an imaging layer to a device or structure. At the smallest dimensions (<20 nm), thin resists or imaging layers have been used exclusively. The transfer of a pattern that is formed in a thin layer resist presents severe technological challenges to resist materials development. A novel approach based on self-assembling monomolecular layer resists is demonstrated with two organosilane films, formed from (aminoethylaminomethyl)phenethyltrimethoxysilane (PEDA) and 4-chloromethylphenyltrichlorosilane (CMPTS). The molecules have separate chemical functionalities for binding to a Si substrate and for promoting chemistry leading to catalysis and the growth of an electroless plated metal film. STM lithographic exposure destroys the ability of the molecule to bind to a catalyst, which initiates an electroless metallization. This forms the basis for a selective imaging and the pattern transfer process. A 25 nm thick Ni layer acts as a very robust etch mask, even as the unmasked regions of Si are etched as deep as 5 μm by reactive ion etching with SF6. With our process 15 nm lines with 3.3 nm edge roughness have been fabricated in the plated Ni and etched into the underlying Si. The development of the resist process and the STM lithography will be described and the resolution of the approach will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 National Research Council 2 postdoctoral associate.Google Scholar
2 See for example, Iaasacson, M. & Murray, A., J. Vac. Sci. Technol., 19, 1117 (1981). W. Chen & H. Ahmed, Appl. Phys. Lett., 62, 1499 (1993).Google Scholar
3 Perkins, F.K., Dobisz, E.A., Brandow, S.L., Calvert, J.M., and Marrian, C.R.K., submitted to Appl. Phys. Lett..Google Scholar
4 Moore, G.E., Proc. IEDM, IEEE cat. no. 75CH1023-1 ED (1975).Google Scholar
5 The National Technology RoadmaD for Semiconductors (Semiconductor Industry Association, San Jose 1994).Google Scholar
6 Lyo, I.-W. & Avouris, Ph., Science, 253, 173 (1991). D.M. Eigler & E.I. Schweizer, Nature, 344, 524 (1991). J. Lyding, T.C. Chen, J.S. Hubacet, J.R. Tucker, & G.C. Abein, Appl. Phys. Lett., 64, 2010 (1994).Google Scholar
7 Dobisz, E.A., Marrian, C.R.K., Salvino, R.E., Ancona, M.A., Perkins, F.K., Turner, N.H., J. Vac. Sci. Technol. B11, 2733 (1993).Google Scholar
8 Howard, R.E. Craighead, H.G., Jackel, L.D., Mankiewich, P.M., J. Vac. Sci. Technol., B1, 1101 (1983).Google Scholar
9 Dobisz, E.A. and Martian, C.R.K., Appl. Phys. Lett., 58, 2526 (1991).Google Scholar
10 McCord, M.A. & Pease, R.F.W., J. Vac. Sci. Technol. B6, 293 (1987).Google Scholar
11 Most of the concurrence with these effects are through private communications. One published report is McCord, M.A., Wagner, A., and Donohue, T., J. Vac. Sci. Technol., B11, 2958 (1993), Fig. 8. At 100 nm to 1 μm dimensions these effects were discussed at the 1995 SPIE Microlithography Symposium, San Jose, Feb. 19–24, and the 1993 Review of the Defense Advanced Lithography Program, New Orleans, LA, Jan. 25–28, 1993.Google Scholar
12 The resist is Shipley SAL-601-ER7.Google Scholar
13 See for example Dobisz, E.A. & Marrian, C.R.K., J, Vac. Sci. Technol. B9, 3024 (1991). C.R.K. Martian, E.A. Dobisz, J.A. Dagata, J. Vac. Sci. Technol. B10, 2877 (1992).Google Scholar
14 See for example Dobisz, E.A., Craighead, H.G., Beebe, E.D., & Levkoff, J., J. Vac. Sci. Technol. B4, 850 (1986).Google Scholar
15 See for example reference 8.Google Scholar
16 Sweeney, S., J. Vac. Sci. Technol. B3, 918 (1995). A. Scherer; H.G. Craighead, and E.D. Beebe, J. Vac. Sci. Technol., B5, 1048 (1987).Google Scholar
17 Calvert, J.M., J. Vac. Sci. Technol., B11, 2155 (1993).Google Scholar
18 Dressick, J., Dulcey, C.S., Georger, J.H., and Calvert, J.M., Chem. Mater., 6, 148 (1993).Google Scholar
19 Calvert, J.M., Koloski, T.S., Dressick, W.J., Dulcey, C.S., Peckerar, M.C., Cerrina, F., Taylor, J.W., Suh, D., Wood, O.R. II, MacDowell, A.A., and D'Sousza, R., Optical Engineering, 32, 2437 (1993).Google Scholar
20 Lercel, M.J., Tiberio, R.C., Chapman, P.F., Craighead, H.G., Sheen, C.W., Parikh, A.N., and Allara, D.L., J. Vac. Sci Technol., B11, 2823 (1993).Google Scholar
21 Marrian, C.R.K., Perkins, F.K., Brandow, S.L., Koloski, T.S., Dobisz, E.A., & Calvert, J.M., in “Nanolithography: A Borderland between STM, IB, and X-Ray Lithographies”, Kluwer Academic Publishers, Netherlands, 1994, pp 175188.Google Scholar
22 Ibe, J.B., Bey, P.P. Jr., Brandow, S.L., Brizzolara, R.A., Burnham, N.A., Dilella, D.P., Lee, K.P., Marnian, C.R.K., and Colton, R.J., J. Vac. Sci. Technol., 1990, A8, 3570.Google Scholar
23 Koloski, T.S., Dulcey, C.S., Dressick, W.J., and Calvert, J.M., Langmuir, 10, 3122 (1994).Google Scholar
24 Dressick, W.J., Dulcey, C.S., Georger, J.H. Jr., Calabrese, G.S., and Calvert, J.M., J. Electrochem. Soc., 141, 210 (1994).Google Scholar
25 Brandow, S.L., Dressick, W.J., Chow, G.M., Marrian, C.R.K., and Calvert, J.M., J. Electrochem. Soc. accepted for publication.Google Scholar
26 Marrian, C.R.K., Perkins, F.K., Brandow, S.L., Koloski, T.S., Dobisz, E.A., & Calvert, J.M., Appl. Phys. Lett., 64, 390 (1994).Google Scholar
27 Perkins, F.K., Dobisz, E.A., Brandow, S.L., Koloski, T.S., Calvert, J.M., Rhee, K.W., Kosakowski, J.E., Marrian, C.R.K., J. Vac. Sci. Technology, B12, 3725 (1994).Google Scholar
28 Perkins, F.K., Dobisz, E.A., Koops, H.W., Brandow, S.L., to be published.Google Scholar
29 Special thanks to Hans Koops, Deutches Bundepost, Darmstadt, Germany.Google Scholar
30 Dobisz, E.A. & Marrian, C.R.K., J. Vac. Sci. Technol. B9, 3024 (1991). C.R.K. Marrian, E.A. Dobisz, J.A. Dagata, J. Vac. Sci. Technol. B10, 2877 (1992).Google Scholar
31 Perkins, F.K., Dobisz, E.A., Brandow, S.L., Calvert, J.M., and Marrian, C.R.K., J. Vac. Sci. Technol., B13, to published (1995).Google Scholar
32 Calvert, J.M., Calabrese, G.S., Bohland, J.F., Dressick, W.J., Dulcey, C.S., Georger, J.H., Kosakowski, J., Pavelcheck, E.K., Rhee, K.W., Shirey., L.M., J. Vac. Sci. Technol., B12, 3884 (1994).Google Scholar