Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T16:08:31.106Z Has data issue: false hasContentIssue false

Self-Assembled Conductive Network of Carbon Nanotubes in Polyaniline Forming Potential Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Sanju Gupta
Affiliation:
[email protected], University of Missouri-Columbia, Electrical and Computer Engineering, 6th St. 303 EBW, Columbia, MO, 65211-2300, United States, 57388200948, 5738820397
V Kandagor
Affiliation:
[email protected], Missouri State University, Physics, 901 S. National Ave., Springfield, MO, 65897, United States
R. Hauge
Affiliation:
[email protected], Rice University, Chemistry, Houston, TX, 77251, United States
Y Ding
Affiliation:
[email protected], Crosslink Inc., St. Louis, MO, 63122, United States
R. J. Patel
Affiliation:
[email protected], Missouri State University, Physics and Materials Science, 901 S. National Ave., Springfield, MO, 65897, United States
Get access

Abstract

Carbon nanotubes (CNTs) are of great interest because of several unsurpassable physical (mechanical, electrical, thermal, and chemical) properties. Especially their large elastic modulus and breaking strength make them highly attractive for their use as reinforced agents in forming a new class of multifunctional advanced materials - onanocomposites, in addition to high conductivity (either in semiconducting or metallic regimes) achieved through lower percolation thresholds for several electronic applications. Among the known conducting polymers, polyaniline (PANI) has a high potential due to its ease of synthesis, excellent environmental, and thermal stability and reversible control of its electrical/electronic properties. In this work, PANI-single-/multiwalled NTs composites films containing different nanotube content of both kinds were synthesized by spin-cast preceded by ultrasonic mixing of the constituents. They were characterized using complementary techniques including scanning electron microscopy, X-ray diffraction, infrared and Raman spectroscopy, and conductivity revealing their microscopic structure and physical properties thus helping in establishing process-structure-property correlations. The present work will discuss some of these findings in terms of a) self-alignment of nanotubes in conducting polymer b) their optical and electrical properties, and c) their design with a view to electronic and sensor applications, all ascribed due to long range π-π interaction between the constituents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. de Heer, W. A. and Ugarte, D., Chem. Phys. Lett. 207, 480 (1993).Google Scholar
3. Poncharal, P., W ang, Z.L., Ugarte, D., and de Heer, W.A., Science 283, 1513 (1999).Google Scholar
4. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, Academic Press, New York (1996).Google Scholar
5. Hamon, M.A., Chen, J., Hu, H., Chen, Y., Itkis, M.E., Rao, A.M., Eklund, P.C., and Haddon, R.C., Adv. Mater. 11, 834 (1999).Google Scholar
6. P.M.Ajayan, Stephan, O., Collie, C. and Trauth, D., Science 265, 1212 (1994).Google Scholar
7. Dai, L. and W., A. Mau, H., Adv. Mater. 13, 899 (2001).Google Scholar
8. Baughman, R. H., Zakhido v, A.A., and Heer, W.A., Science 197, 787 (2002).Google Scholar
9. Chen, G. Z., Shaffer, M.S.P., Coleby, D., Dioxan, G., Zhou, W., Fray, D.J., and Windle, A. H., Adv. Mater. 12, 522 (2000).Google Scholar
10. Hughes, M., Chen, G. Z., Shaf fer, M. S., Fray, D. J., and Windle, A.H., Chem. Mater. 14, 1610 (2002).Google Scholar
11. Do wns, C., Nuget, J., Ajayan, P.M., Duquette, D.J., and Santhanam, K.S.V, Adv. Mater. 12, 1028 (1999).Google Scholar
12. Gao, M., Huang, S., Dai, L., W allace, G., Gao, R., and Wang, Z., Angew. Chem. 112, 3810 (2000).Google Scholar
13. V alter, B., Ram, M.K., and Nicolini, C., Langmuir 18, 1535 (2002).Google Scholar
14. Fan, J., Wan, M., Zhu, D., Chang, B., Pan, Z., and Xie, S., J. Appl. Polym. Sci. 74, 2605 (1999).Google Scholar
15. Kymakis, E. and Amaratunga, G. A. J., Appl. Phys. Lett. 80, 112 (2002).Google Scholar
16. Woo, H. S., Czerw, R., W ebster, S., Carroll, D. L., Park, J.W., and Lee, J. H., Synth. Met . 116, 369 (2001).Google Scholar
17. Curran, S. A., Ajayan, P. M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Da vey, A.P, Drury, , Mc Carthy, B., Maier, S., and Strevens, A., Adv. Mater. 10, 1091 (1998).Google Scholar
18. Panhuis, M., Maiti, A., Dalton, A.B., van den Noort, A., Coleman, J.N., Mc Carthy, B., and Blau, W.J., J. Phys. Chem. B 107, 478 (2003).Google Scholar
19. Blanchet, G. B., Loo, Y. L., Rogers, J. A., Fincher, C. R., and Gao, F., Appl. Phys. Lett. 82, 463 (2003).Google Scholar
20. Heeger, A. J. and MacDiamird, A. G., Mol. Cryst. Liq. Cryst. 77, 1 (1981).Google Scholar
21. Chiang, J. C. and MacDiarmid, A. G., Synth. Met. 13, 193 (1986).Google Scholar
22. Yao, Y., Smith, P., and Heeger, A., Synth. Met. 48, 91 (1992).Google Scholar
23. Zengin, Shou, W., Jin, J., Czerw, R., Smith, D. W. Jr., Echegoyen, L., Carroll, D. L., Goulger, S. H., and Ballato, J., Adv. Mater. 14, 1480 (2002).Google Scholar
24. Kinlen, P. J., US Patent No. 5,863,465 (1999).Google Scholar
25. Gill, P. R., Murray, W., and Wright, M. H., The Levenberg-Marquardt Method, Sec. 4.7.3 in Practical Optimization, Academic Press, London, 1981), pp.136137.Google Scholar
26. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R., Dresselhaus, G., and Dresselhaus, M. S., Science 275, 187 (1997).Google Scholar
27. Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G., Phys. Rev. Lett. 72, 1878 (1994).Google Scholar
28. Berber, S., Kwon, Y.-K., and Tomanek, D., Phys. Rev. B 62, R2291 (2000); J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).Google Scholar
29. Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., Kawagoe, T., Macromolecules, 24, 779 (1994).Google Scholar
30. Blanchet, G. B., Fincher, C. R., and Gao, F., Appl. Phys. Lett. 82, 1290 (2003).Google Scholar