Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T08:44:16.462Z Has data issue: false hasContentIssue false

Selective Oxidation and Resistivity Reduction of Cu-Mn Alloy Films for Self-forming Barrier Process

Published online by Cambridge University Press:  01 February 2011

Jun Iijima
Affiliation:
[email protected], Tohoku University, Department of Materials Science, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan, +81-22-795-7360, +81-22-795-7360
Yoshito Fujii
Affiliation:
[email protected], Tohoku University, Department of Materials Science, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
Koji Neishi
Affiliation:
[email protected], Tohoku University, Department of Materials Science, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
Junich Koike
Affiliation:
[email protected], Tohoku University, Department of Materials Science, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
Get access

Abstract

Optimum conditions of annealing atmosphere and temperature for the reduction of Mn content from the Cu-Mn alloy layer in Cu-Mn self-forming barrier process were investigated. Mn was selectively oxidized at the surface by annealing in Ar gas containing an impurity level of O2 (<0.01ppm). Resistivity of the film was decreased to 2.0 μΩcm after annealing. On the other hand, internal oxidation of Cu-Mn alloy was observed with no external protective surface oxide layer in Ar containing more than 10 ppm of O2. An optimum oxygen concentration is found to be in between 0.01 and 10 ppm in 1atm of Ar gas at 350 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, W., Cho, H., Cho, B., Kim, J., Kim, Y. S., Jung, W. G., Kwon, H., Lee, J., Reucroft, P. J., ee, C., and Lee, J., J. Electrochem. Soc. 147, 3066 (2000).Google Scholar
2. Frederick, M. J., Goswami, R. and Ramanath, G.: J. Appl. Phys. 93 (2003) 5966.Google Scholar
3. Liu, C. J., Chen, J. S., and Lin, Y. K., J. Electrochem. Soc. 151, G18 (2004).Google Scholar
4. Liu, C. J. and Chena, J. S. J. Vac. Sci. Technol. B 23(1) 90 (2005)Google Scholar
5. Liu, C. J., Jeng, J. S., Chen, J. S., and Lin, Y. K., J. Vac. Sci. Technol. B 20, 2361 (2002).Google Scholar
6. Tsukimoto, S., Kabe, T., Ito, K., and Murakami, M. J. Electron. Mater. 36, 258 (2007).Google Scholar
7. Ito, K., Tsukimoto, S., Kabe, T., Tada, K. and Murakami, M. J. Electron. Mater. 36, 606 (2007).Google Scholar
8. Shepherd, K., Niu, C., Martini, D., Kelber, J.A. Applied Surface Science 158, 1 (2000)Google Scholar
9. CHU, J.P. and LIN, C.H. J. Electron. Mater. 35, 1933 (2006).Google Scholar
10. Koike, J. and Wada, M., Appl. Phys. Lett. 87, 041911 (2005).Google Scholar
11. Haneda, M., Iijima, J., and Koike, J., Appl. Phys. Lett. 90, 252107 (2007).Google Scholar
12. Koike, J., Haneda, M., Iijima, J., Otsuka, Y., Sako, H., Neishi, K., J. Appl. Phys. 102, 043527 (2007).Google Scholar
14. Usui, T., Nasu, H., Takahashi, S., Shimizu, N., Nishikawa, T., Yoshimaru, M., Shibata, H., Wada, M., Koike, J., IEEE Trans. Electron Devices. 53, 2492 (2006).Google Scholar
15. Birks, N. and Meier, G.H., Introduction to high temperature oxidation of metals, Arnold, E., ondon. (1983).Google Scholar
16. Shewmon, Paul G., Transformations in metals, McGraw-Hil, New York (1969).Google Scholar