Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:10:18.638Z Has data issue: false hasContentIssue false

Selective Aluminum CVD for Sub-Micron VIA Plug Filling

Published online by Cambridge University Press:  25 February 2011

N. Zhu
Affiliation:
Microelectronics Sciences Lab, Columbia University, New York, NY 10027
S. K. Jo
Affiliation:
Microelectronics Sciences Lab, Columbia University, New York, NY 10027
M. B. Freiler
Affiliation:
Microelectronics Sciences Lab, Columbia University, New York, NY 10027
R. Scarmozzino
Affiliation:
Microelectronics Sciences Lab, Columbia University, New York, NY 10027
R. M. Osgood Jr
Affiliation:
Microelectronics Sciences Lab, Columbia University, New York, NY 10027
T. Cacouris
Affiliation:
IBM East Fishkill Facility, Hopewell Jet, NY 12533
Get access

Abstract

We present a novel technique to metallize high-aspect-ratio, small-dimension contact holes and via plugs for application to integrated circuits and packaging. The technique uses a laser-assisted process to deposit a thin film of aluminum from DMA1H, which forms a seed layer for subsequent selective CVD. The resistivity of the deposited aluminum is nearly that of the bulk metal, the contact resistivity is good (∼0.03 μΩ-cm2), and the morphology of the deposited film is comparable to that obtained with physical vapor deposition. This process has been used to fill via holes in a SiO2 substrate, and small-diameter (0.7 μm), high-aspect-ratio (3:1), aluminum plugs have been repeatedly formed without the incorporation of voids. A custom-made via chain structure was used to determine the via resistance (plug and contact), which was found to be 0.1 -0.3 Ω. Our technique opens a new process window for void-free high-aspect-ratio via and contact hole filling, and is particularly interesting in that it offers the potential to use aluminum or aluminum-copper in plug metallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, a) Lai, W. Y- C., Cheung, K. P., Favreau, D. P., Case, C., Liu, R., Murray, R. G., Kwakman, L. F. Tz., and Huibregtse, D., in Proc. 8th Int. IEEE VLSI Multilevel Interconnection Conf, (Santa Clara, CA, 1991), p. 89;Google Scholar
b) Amazawa, T. and Arita, Y., Tech. Digest IEEE IEDM, p 265, 1991;Google Scholar
c) Tsubouchi, K., Masu, K., Shigeeda, N., Matano, T., Hiura, Y., and Mikoshiba, N., Appl. Phys. Lett. 57, 1221 (1990);Google Scholar
d) Piekaar, H., Kwakman, L., and Granneman, G. E., in Proc. 6th Int. IEEE VLSI Multilevel Interconnection Conf, (Santa Clara, CA, 1989), p. 122.Google Scholar
2. Tsao, J. Y. and Ehrlich, D. J., Appl. Phys. Lett 45, 617 (1984).Google Scholar
3. Higashi, G. S. and Fleming, C. G., Mater. Res. Soc. Symp. Proc. 75, 117 (1987).Google Scholar
4. Cacouris, T., Scarmozzino, R., and Osgood, R. M. Jr, in Proc. 7th Int. IEEE VLSI Multilevel Interconnection Conf, (Santa Clara, CA, 1990), p. 268.Google Scholar
5. Zhu, N., Cacouris, T., Scarmozzino, R., and Osgood, R. M. Jr, Appl. Phys. Lett. 58, 1180(1991).CrossRefGoogle Scholar
6. Zhu, N., Cacouris, T., Scarmozzino, R., and Osgood, R. M. Jr, to be published in the J. Vac. Sci. Technol. B, May/June 1992.Google Scholar
7. Allen, L. H., Zhang, M. Y., Mayer, J. W., Colgan, E. G., and Young, R., J. Appl. Phys. 70, 253 (1991).Google Scholar