Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T04:57:20.329Z Has data issue: false hasContentIssue false

Selected Composites for High Field Magnets

Published online by Cambridge University Press:  26 February 2011

Ke Han
Affiliation:
[email protected], Nationa High Magnetic Field Laboratory, Magnet Science and Technology, 1800 E. Paul Dirac Drive, Tallahassee, FL, 32309, United States
Jingping Chen
Affiliation:
[email protected], Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, 32301, United States
Baozhi Cui
Affiliation:
[email protected], Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, 32301, United States
Charney A Davy
Affiliation:
[email protected], Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, 32301, United States
Peter N Kalu
Affiliation:
[email protected], Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, 32301, United States
Get access

Abstract

The national high magnetic field laboratory builds and uses various high field magnets for fundamental research. In building high field magnets, a variety of high strength composites are required because of the Lorentz stresses generated by high field exceeding the strength of most of the materials, particular conductors. For example, a field of 60 T can generate a magnetic pressure that corresponds to a stress in the conductor of 1.5 GPa, which is at the limit of known conducting materials with conductivity higher than 70% International Annealed Copper Standard and sizes suitable for building high field magnets. The design of high field magnets is limited by these forces and, consequently, by the available materials. At the same time, the materials need to have excellent physical properties. For instance, the conductors need to have high electrical conductivity and high specific heat and the superconductors should have high critical current in field and low alternative current losses. This paper outlines our requirements and research on metal matrix composite materials for building high field magnets. The discussions include both the macrocomposite and microcomposite. The scales of the structures in the composites are from millimeters to nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wood, J.T., Embury, , , J.D. and Ashby, M., Acta Mater., 45(3) (1997) 1099.10.1016/S1359-6454(96)00220-0Google Scholar
[2] Van Cleemput, M., Jones, H., Van der Burgt, M., Barrau, J-R., Lee, J.A., Eyssa, Y., and Schneider-Muntau, H.-J., Physica B, 216 (1996) 226. [3 ]Pernambuso-Wise, P, in High Magnetic Fields, Applications, Generation, Materials, ed. Schneider-Muntau, H.-J., World Scientific, NJ, USA, (1997), pp.37110.1016/0921-4526(95)00478-5Google Scholar
[4] Frings, P.H, Vanbockstal, L, Physica B, 211(1–4) (1995) 73.10.1016/0921-4526(94)00947-TGoogle Scholar
[5] Baca, A., Coe, H., Han, K., Embury, J. D., Kihara, K., Li, L., Schillig, J., Sims, J., Walsh, R., IEEE Transactions on Applied Superconductivity, this issue.Google Scholar
[6] Embury, J.D. and Han, K., “Conductor Materials for High Field Magnets”, Current Opinions in Solid State and Materials Science, 3(3), 304308 (1998).10.1016/S1359-0286(98)80106-XGoogle Scholar
[7] Brandao, L., Han, K., Embury, J. D., Walsh, R., Toplosky, V. and VanSciver, S, IEEE Transactions of Applied Superconductivity, 10 (1) 12821287 (2000).10.1109/77.828470Google Scholar
[8] Han, K., Walsh, R.P., Ishmaku, A., Toplosky, V., and Embury, J. D., Phil. Mag., 84 (34), 37053716, (2004).10.1080/14786430412331293496Google Scholar
[9] Zhao, Y.H.; Bingert, J.F.; Liao, X.-Z.; Cui, B.-Z.; Han, K.; Sergueeva, A.V.; Mukherjee, A.K.; Valiev, R.Z.; Langdon, T.G. and Zhu, Y.T., Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper, Adv. Mater., 18, 29492953 (2006)Google Scholar
[10] Wang, Y M, Ma, E, Valiev, R Z, Zhu, Y T, Advanced Materials, 16 (4): 328-+ FEB 17 2004.10.1002/adma.200305679Google Scholar
[11] Cheng, S., Ma, E., Wang, Y. M., Kecskes, L., Youssef, K. M., Koch, C.C., Trociewitz, U. P. and Han, K., Acta Materialia, 53(5), 15211533, (2005).10.1016/j.actamat.2004.12.005Google Scholar
[12] Frommeyer, G. and Wassermann, G. Physica Status Solidi (a) 27, pp.99105, 1975.10.1002/pssa.2210270112Google Scholar
[13] Frommeyer, G. and Wassermann, G., Acta Metall, vol. 23, 1975, pp. 1353.10.1016/0001-6160(75)90144-3Google Scholar
[14] Spitzig, W. A., Pelton, A. R., and Laabs, F. C. Acta Metallurgica et Materialia 35(10), pp.24272442, 1987.10.1016/0001-6160(87)90140-4Google Scholar
[15] Bevk, J, Harbson, J P, Bell, J L, J Applied Physics 49 (12): 60316038 1978 10.1063/1.324573Google Scholar
[16] Han, K., Lawson, A.C., Wood, J.T., Embury, J.D., Von Dreele, R. B. and Richardson, J. W. Jr, “Microstructure and Internal Stresses in Cold-deformed Cu-Ag and Cu-Nb Wires”, Phil. Mag., 84(24), 25792593 (2004).10.1080/14786430410001689981Google Scholar
[17] Klassen, R J, Conlon, K T, Wood, J T, Scripta Materialia 48 (4): 385389 FEB 17 2003 10.1016/S1359-6462(02)00452-9Google Scholar
[18] Ohsaki, S, Yamazaki, K, Hono, K, Scripta Materialia 48 (12): 15691574 JUN 2003 Google Scholar
[19] Sauvage, X, Thilly, L, Blavette, D, J. Dd Physique IV 11 (PR4): 2732 SEP 2001 Google Scholar
[20] Sauvage, X, Renaud, L, Deconihout, B, Blavette, D, Ping, D H, Hono, K, ACTA MATERIALIA 49 (3): 389394 FEB 8 2001 10.1016/S1359-6454(00)00338-4Google Scholar
[21] Funkenbusch, P D, Courtney, T H, Acta Metallurgica 33 (5): 913922 1985 10.1016/0001-6160(85)90116-6Google Scholar
[22] Heringhaus, F, Schneider-Muntau, H J, Gottstein, G, Materials Science and Engineering A, 347 (1–2): 920 APR 25 2003 10.1016/S0921-5093(02)00590-7Google Scholar
[23] Hangen, U, Raabe, D, Acta Metallurgica et Materialia, 43 (11): 40754082 NOV 1995 10.1016/0956-7151(95)00079-BGoogle Scholar
[24] Raabe, D, , Heringhaus, Hangen, U, Gottstein, G, Zeitchrift Metallkunde E 86 (6): 405415 JUN 1995 Google Scholar
[25] Han, K, Vasquez, A A, Xin, Y, Kalu, P N, Acta Materialia, 51 (3): 767780 FEB 7 2003 10.1016/S1359-6454(02)00468-8Google Scholar
[26] Thilly, L, Veron, M, Ludwig, O, Lecouturier, F, Peyrade, J P, Askenazy, S, Philosophical Magazine, 82 (5): 925942 MAR 2002 10.1080/01418610208240010Google Scholar
[27] Han, K, Embury, J D, Sims, J R, Campbell, L J, Schneider-Muntau, H J, Pantsyrnyi, V I, Shikov, A, Nikulin, A, Vorobieva, A, Materials Science and Engineering 267 (1): 99114 JUL 15 1999 10.1016/S0921-5093(99)00025-8Google Scholar
[28] Sakai, Y, Inoue, K, Asano, T, Wada, H, Maeda, H, Applied Physics Letters, 59 (23): 29652967, 1991 10.1063/1.105813Google Scholar
[29] Liu, J B, Zhang, L, Meng, L, Acta Materialia Sinica, 42 (9): 937941 SEP 2006 Google Scholar
[30] Liu, J B, Meng, L, Zeng, Y W, Materials Science and Engineering A, 435: 237244 NOV 5 2006 10.1016/j.msea.2006.07.125Google Scholar
[31] Hong, S I, Hill, M A, J Materials Science 37 (6): 12371245 MAR 15 2002 Google Scholar
[32] Sinclair, C W, Embury, J D, Weatherly, G C, Conlon, K T, Philosophical Magazine 85 (26–27): 31373156 SEP 2005 10.1080/14786430500155064Google Scholar
[33] Choi, Y, Song, M S, Lee, K L, Hong, S I, Nanaomaterials by Severe Plastic Deformation Materials Forum, 503–504: 901906 2006 Google Scholar
[34] Ge, J P, Zhao, H, Yao, Z Q, Transactions Nonferrous Metals Society of China 15 (3): 553559 JUN 2005 Google Scholar
[35] Yao, Z., Ge, J., Liu, S, J Materials Science, 41 (12): 38253829 JUN 2006 10.1007/s10853-006-7941-5Google Scholar
[36] Vidal, V, Thilly, L, Lecouturier, F, Renault, P O, Acta Materialia, 54 (4): 10631075 FEB 2006 10.1016/j.actamat.2005.10.031Google Scholar
[37] Raabe, D, Miyake, K, Takahara, H, Materials Science and Engineering A 291 (1–2): 186197 OCT 31 2000 10.1016/S0921-5093(00)00981-3Google Scholar
[38] Raabe, D, Ge, J, Scripta Materialia 51 (9): 915920 NOV 2004 10.1016/j.scriptamat.2004.06.016Google Scholar
[39] Gao, H Y, Wang, J, Shu, D, Sun, B D, Scripta Materialia 53 (10): 11051109 NOV 2005 10.1016/j.scriptamat.2005.07.028Google Scholar
[40] Song, J S, Hong, S I, Kim, H S, J Materials Processing Technology, 113 (1–3): 610616 JUN 15 2001 10.1016/S0924-0136(01)00665-3Google Scholar
[41] Gaganov, A., Freudenberger, J., Botcharova, E., Schultz, L., Materials Science and Engineering A, 437 (2): 313322 NOV 15 2006 10.1016/j.msea.2006.07.121Google Scholar
[42] Popova, E N, Popov, V V, Romanov, E P, Rodionova, L A, Sudareva, S V, Khlebova, N E, Pantsyrnyi, V I, Shikov, A K, Vorob'eva, A E, Physics Metals and Metallography 94 (1): 7381 JUL 2002 Google Scholar
[43] Mattissen, D, Raabe, D, Heringhaus, F, Acta Materialia 47 (5): 16271634 MAR 31 1999 10.1016/S1359-6454(99)00026-9Google Scholar
[44] Popova, E N, Popov, V V, Rodionova, L A, Romanov, E P, Sudareva, S V, Hlebova, N E, Pantsyrny, V I, Shikov, A K, Vorobieva, A E, Scripta Materialia 46 (3): 193198 FEB 1 2002 Google Scholar
[45] Pantsyrnyi, V, Shikov, A, Vorobieva, A, Khlebova, N, Potapenko, I, Silaev, A, Beliakov, N, Vedernikov, G, Gubkin, I, Salunin, N, Kozlenkova, N, Polikarpova, M, IEEE Trans. Appl. Supercond. 10 (1): 12631268 MAR 2000 10.1109/77.828465Google Scholar
[46] Spencer, K, Lecouturier, F, Thilly, L, Embury, J D, Advanced Engineering Materials 6 (5): 290297 MAY 2004 10.1002/adem.200400014Google Scholar
[47] Ekin, J W, CRYOGENICS 35: S25-S28 Suppl. S 1995 Google Scholar
[48] Arai, K, Tateishi, H, Umeda, M, Agatsuma, K, Takizawa, S, IEEE Trans. Magnetics 30 (4): 21642167 Part 2, JUL 1994 10.1109/20.305700Google Scholar
[49] Ekin, J W, APPLIED PHYSICS LETTERS 29 (3): 216219 1976 10.1063/1.88999Google Scholar
[50] Ekin, J W, CRYOGENICS 20 (11): 611624 1980 Google Scholar
[51] Miyoshi, K, Endoh, S, Meguro, S, Nishijima, G, Awaji, S, Watanabe, K, IEEE Trans. Appl. Supercond. 14 (2): 10041007 Sp. Iss. SI, JUN 2004.Google Scholar
[52] Awaji, S, Oguro, H, Nishijima, G, Watanabe, K, Katagiri, K, Miyoshi, K, Meguro, S, IEEE Trans. Appl. Supercond. 14 (2): 983986 Sp. Iss. SI, JUN 2004.Google Scholar
[53] Iwaki, G, Sato, J, Katagiri, K, Watanabe, K, IEEE Trans. Appl. Supercond. 11 (1): 36313634 Part 3, MAR 2001.10.1109/77.919851Google Scholar
[54] Iwasaki, S, Goto, K, Sadakata, N, Saito, T, Kohno, O, IEEE Trans. Magnetics 32 (4): 25662569 Part 1, JUL 1996 10.1109/20.511397Google Scholar
[55] Sakamoto, H, Higuchi, M, Endoh, S, Nagasu, Y, Kimura, A, Wada, K, Meguro, S, Ikeda, M, IEEE Trans. Appl. Supercond. 10 (1): 10081011 MAR 2000 10.1109/77.828402Google Scholar
[56] Murase, S, Nakayama, S, Masegi, T, Koyanagi, K, Nomura, S, Shiga, N, Kobayashi, N, Watanabe, K, J Japan Institute of Metals 61 (9): 801806 SEP 1997.10.2320/jinstmet1952.61.9_801Google Scholar
[57] Chen, J.; Han, K.; Kalu, P.N. and Markiewicz, W.D., IEEE Trans. Appl. Supercond., 15 (2), 35683571 (2005).Google Scholar