Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:28:03.588Z Has data issue: false hasContentIssue false

Segregation of Copper to (100) and (111) Silicon Surfaces in Equilibrium with Internal Cu3Si Precipitates

Published online by Cambridge University Press:  03 September 2012

W. R. Wampler*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056 wrwampl@sandia. gov
Get access

Abstract

The energetics of copper segregation to silicon surfaces were examined by measuring the Cu coverage after equilibration between Cu on the surface and internal Cu3Si, for which the Cu chemical potential is known. For oxide-free surfaces the Cu coverage was close to one monolayer on (111) surfaces but was much smaller on (100) surfaces. The Cu coverage was greatly reduced by oxide passivation of the surface. LEED showed the 7×7 structure of the clean (111) silicon surface converted to a quasiperiodic 5×5 structure after equilibrating with Cu3Si. The 2×1 LEED patterns for (100) surfaces indicated no change in surface structure due to the Cu3Si. These results show that the free energy of copper in Cu3Si is higher than that of copper on (111) surfaces but lower than that of copper on (100) surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mater. Res. Soc. Bull., Vol.19, No. 8, Aug. 1994.Google Scholar
2 Weber, E. R., Appl. Phys. A30, 1 (1983).Google Scholar
3 Gilles, D. and Weber, E. R., Phys. Rev. Lett. 64, 196 (1990).Google Scholar
4 Myers, S. M. and Follstaedt, D. M., J. Appl. Phys. 79, 1337 (1996).Google Scholar
5 Myers, S. M. Petersen, G. A. and Seager, C. H., J. Appl. Phys. 80, 3717 (1996).Google Scholar
6 Follstaedt, D. M., Appl. Phys Lett. 62, 1116 (1993).Google Scholar
7 Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 119, 666 (1986).Google Scholar
8 Vinh, Le Thanh, Eddrief, M., Sebenne, C. A., Dumas, P., Taleb-Ibrahimi, A., Gunther, R., Chabal, Y. J. and Derrien, J., Appl. Phys Lett. 64, 3308 (1994).Google Scholar
9 Follstaedt, D. M. and Myers, S. M., Mat. Res. Soc. Symp. Proc. 316, 27 (1994).Google Scholar
10 Mundschau, M., Bauer, E., Telieps, W. and Swiech, W., J. Appl. Phys. 65, 4747 (1989).Google Scholar
11 Daugy, E., Mathiez, P., Salvan, F. and Layet, J. M., Surface Sci. 154, 267 (1985).Google Scholar
12 Zegenhagen, J., Fontes, E., Grey, F. and Patel, J. R., Phys. Rev. B 46, 1860 (1992).Google Scholar
13 Kemmann, H., Müller, F. and Neddermeyer, H., Surface Sci. 192, 11 (1987).Google Scholar
14 Doak, R. B. and Nguyen, D. B., Phys. Rev. 40, 1495 (1989).Google Scholar
15 Demuth, J. E., Koehler, U. K., Hamers, R. J. and Kaplan, P., Phys. Rev. Lett. 62, 641 (1989).Google Scholar
16 Mortensen, K., Phys. Rev. Lett. 66, 461 (1991).Google Scholar
17 Ikeda, T., Kawashima, Y., Itoh, H., and Ichinokawa, T., Surface Sci. 336, 76 (1995).Google Scholar
18 Mathiez, P., Daugy, E., Salvan, F., Metois, J. J. and Hanbücken, M., Surface Sci. 168, 158 (1986).Google Scholar