Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:43:50.456Z Has data issue: false hasContentIssue false

Seeded Heteroepitaxy and the Overgrowth of InN Films: Nucleation with Lattice Mismatched AIN

Published online by Cambridge University Press:  25 February 2011

Thomas J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland20723–6099
Scott A. Ecelberger
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland20723–6099
Wayne A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland20723–6099
Get access

Abstract

The growth and properties of thin films of InN on a variety of substrates nucleated by a 400Å layer of AIN have been shown to be dependent on the lattice mismatch (LMM) with the substrate. Examples are drawn from growth of InN thin films by reactive magnetron sputtering on high symmetry faces of a variety of crystalline substrates [(00.1) sapphire, (111) silicon and (111) yttria-stabilized zirconia, and (001) mica] and amorphous fused quartz. Striking is a comparison of the electrical transport properties for nucleated and unnucleated InN films. For example, the ratio of the Hall mobilities for nucleated and unnucleated InN films deposited on (00.1) sapphire (LMM for AIN and InN of 13.0% and 29.0%, respectively) is ∼102, while this ratio for nucleated and unnucleated InN films on (111) zirconia (LMM for AIN and InN of −14.8% and −7.8%, respectively) is ∼10−2. While all the factors underlying these results are not necessarily obvious, it is rather apparent that this trend in Hall mobility stems from a contrasting trend in film resistivity at a more nearly constant value for the carrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND FOOTNOTES

Bauer, E. G., et al., J. Mater. Res. 5, 852 (1990).Google Scholar
2. For recent thin film results, see: Nakamura, S., Harada, Y., and Seno, M., Appl. Phys. Lett. 58, 2021 (1991);Google Scholar
Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 59, 1844 (1991);Google Scholar
Meng, W. J., Heremans, J., and Cheng, Y. T., Appl. Phys. Lett. 59, 2097 (1991);Google Scholar
Lei, T., Moustakis, T. D., Graham, R. J., He, Y., and Berkowitz, S. J., J. Appl. Phys. 71, 4933 (1992);Google Scholar
Powell, R. C., Lee, N.-E., and Greene, J. E., Appl. Phys. Lett. 60, 2505 (1992);Google Scholar
Asif Kahn, M., Kuznia, J. N., Olson, D. T., Van Hove, J. M., Blasingame, M., and Reitz, L. F., Appl. Phys. Lett. 60, 2917 (1992).Google Scholar
3. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 415 (1988);Google Scholar
Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
4. Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Wickenden, A. E., Proc. Mater. Res. Soc. 221, 167 (1991).Google Scholar
5. Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 71, 5543 (1992).Google Scholar
6. Bryden, W. A., Morgan, J. S., Fainchtein, R., and Kistenmacher, T. J., Thin Solid Films 213, 86 (1992);Google Scholar
Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl Phys. 68, 1541 (1990);CrossRefGoogle Scholar
Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., Dayan, D., Fainchtein, R., and Poehler, T. O., J. Mater. Res. 6, 1300 (1991).CrossRefGoogle Scholar
7. Kistenmacher, T. J. and Bryden, W. A., to be published.Google Scholar