Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:36:49.819Z Has data issue: false hasContentIssue false

Seeded Growth of Si Over SiO2 Substrates by CW Laser Irradiation

Published online by Cambridge University Press:  15 February 2011

L. E. Trimble
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
K. K. Ng
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
H. Baumgart
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
H. J. Leamy
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
Get access

Abstract

Seeded epitaxial growth of Si over SiO2 is demonstrated in two types of structures. In the first case, rectangular pads of deposited Si were recessed into a thick SiO2 film. Narrow (≃ 5μm) via holes in SiO2 linked the pads with the bulk Si substrates. In the second embodiment, SiO2 patterns were recessed into the Si wafers which were then covered with a continuous 0.5μm poly-Si layer. In both cases, nearly planar geometries were maintained by use of local oxidation and etching techniques. Silicon was recrystallized with a focused Ar+ laser beam. Depending on the scanning conditions and the Si pattern geometry, single crystal growth propagated between 30 and >500μm. The factors influencing the extent and quality of the crystallized regions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lam, H. W., in Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York 1982)Google Scholar
2. Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J. and Hong, J. D., Appl.Phys. Lett. 33, 775 (1978).CrossRefGoogle Scholar
3. Ng, K. K., Celler, G. K., Frye, R. C., Leamy, H. J., Povilonis, E. I. and Sze, S. M., IEEE Electr. Dev. Lett. EDL2, 316 (1981).CrossRefGoogle Scholar
4. Leamy, H. J., Frye, R. C., Ng, K. Y., Celler, G. K, Povilonis, E. I. and Sze, S. M., Appl. Phys. Lett. (in press).Google Scholar
5. Lam, H. W., Pinizzotto, R. F. and Tasch, A. F. Jr., J. Electrochem. Soc. 128, 1981 (1981).CrossRefGoogle Scholar
6. Bagley, B. G., Aspnes, D. E., Celler, G. K. and Adams, A. C., in Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York 1982)Google Scholar
7. Fastow, R., Leamy, H. J., Celler, G. K., Wong, Y. H. and Doherty, C. J., in Laser and Electron Beam Solid Interactions and Laser Processing, Gibbons, J. F., Hess, L. D. and Sigmon, T. W., eds.,(North Holland, N.Y. 1981), p. 495.Google Scholar
8. Leamy, H. J., in Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York 1982)Google Scholar
9. Jackson, K. A. and Miller, C. E., J. Cryst. Growth 42, 364 (1977).CrossRefGoogle Scholar
10. Celler, G. K., Leamy, H. J. and Trimble, L. E., J. Electron. Materials, to be published.Google Scholar
11. Stultz, T. J. and Gibbons, J. F., Appl. Phys. Lett. 39, 499 (1981).CrossRefGoogle Scholar